طراحی، سنتز و مطالعه غشاء جدید نانوفیلتراسیون پلیمری-مایع یونی اصلاح شده با نانوکامپوزیت آهن/کولین‌کلراید جهت حذف آلاینده‌های در محیط آبی به روش طراحی آزمایش (DOE)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیمی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران.

چکیده

در مطالعه حاضر، نانوکامپوزیت آهن/کولین‌کلراید جهت اصلاح غشاء پلی‌اترسولفون با هدف بهبود عملکرد غشاء در حذف آلاینده‌ها طراحی، سنتز و استفاده شد. به منظور تعیین خواص و مورفولوژی غشاهای ساخته شده آنالیزهای FTIR، زاویه تماس، تخلخل، BET، TGA و DSC، SEM و همچنین فلاکس عبوری غشاء و گرفتگی آن بررسی شد. به منظور یافتن شرایط بهینه حذف آلاینده، بر اساس مطالعات صورت گرفته، pH و دما به‌عنوان متغیرهای موثر انتخاب و بهینه سازی آن‌ها با استفاده از نرم افزار Design Expert و روش سطح پاسخ آزمایش‌های لازم طراحی و اجرا شد. نتایج نشان دادند که بهترین عملکرد غشاء در حذف آلاینده (رنگ اسید اورنج 7) با غشاء 5/0 درصد وزنی نانوکامپوزیت آهن/کولین‌کلراید و غلظت 5 میکرومولار از آلاینده در 7/6 = pH و دمای 9/33 درجه سانتیگراد است که منجر به %6/97 حذف آلاینده می‌گردد. بررسی مدل پیش‌بینی شده و نتایج آزمایشگاهی نشان دادند که تطابق خوبی بین آن‌ها وجود دارد. همچنین نفوذپذیری آب در غشاهای اصلاح شده توسط نانوکامپوزیت آهن/کولین‌کلراید با توجه به تغییرات در ساختار غشاء و آبدوستی سطح غشاء در مقایسه با غشاء خالص افزایش یافت. در ادامه مشکل گرفتگی غشاها به‌عنوان مهم‌ترین عامل کاهش عملکرد و عمر غشاهای پلیمری مورد بررسی قرار گرفت. با استناد به نتایج به‌دست آمده مشخص گردید که حضور نانوکامپوزیت آهن/کولین‌کلراید اثر قابل توجهی بر بهبود آبدوستی غشاء داشته و در نتیجه منجر به کاهش قابل توجه میزان گرفتگی و افزایش مقدار فلاکس برگشتی نسبت به غشاء خالص می‌گردد.

کلیدواژه‌ها


[1] P. Bansal, G. R. Chaudhary, and S. K. Mehta, Comparative study of catalytic activity of ZrO 2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chemical Engineering Journal, 2015. 280: p. 475-485.
 
[2] A. Mohd Azmier, R. Alrozi. "Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. " Chemical Engineering Journal 171. 2 (2011): 511-516.
 
[3] S. U. Jadhavb, S. D. Kalmea, S. P. Govindwar, Biodegradation of Methyl red byGalactomyces geotrichumMTCC 1360. International Biodeterioration & Biodegradation 62 (2008) 135–142.
 
[4]M. H. Vijaykumar, P. A. Vaishampayan, Y. S. Shouche, "Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. " Enzyme and Microbial Technology 21. 2 (2007): 212-211.
 
[5] M. Goua, Y. Qua, J. Zhou, F. Ma, L. Tana, Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Journal of Hazardous Materials171. 1 (2009): 312-319.
 
[6] R. G. Saratalea, G. D. Sarataleb, J. S. Changb, S. P. Govindwar, Decolorization and biodegradation of textile dye Navy blue HER byTrichosporon beigeliiNCIM-3326. Journal of Hazardous Materials 166 (2009) 1421–1428.
 
[7] Ch. Zhao, H. Deng, Y. Li, Zh. Liu, Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. Journal of Hazardous Materials 176. 1 (2010): 002-092.
 
[8] B. Chen, M. Yuan, H. Liu. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. Journal of hazardous materials 100. 1 (2011): 236-222.
 
[9] دبیری مینو. آلودگی محیط زیست. انتشاران اتحاد. شابک: 964560205X. 1392.
 
[10] Z. Xi, B. Chen, Removal of polycyclic arom
 
atic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. Journal of Environmental Sciences 26. 2 (2014):737-720.
 
[11] مولدر، مار سل، " ا صول بنیانی فناوری غ شایی"، مترجمان: عبدالرضا مقدسی، زهرا رجبی، محسن حسینی، تهران، انتشارات دانشگاهی کیان- اراک، انتشارات دانشگاه اراک، چاپ اول، 1393
 
[12] حیاتی. هایده، دوستی. محمدرضا، "کاربرد فرآیندهای غشایی در تصافیه­ی آب"، ماهنامه فناوری نانو، سال دهم، شماره 11 ، بهمن 90 ، 19 – 15.
[13] مدائنی. سید سیاوش ، " غشا و فرآیندهای غشایی " ، چاپ اول، گروه مهندسی شیمی دانشکده ی فنی و مهندسی دانشگاه رازی کرمانشاه، 1381.
 
[14] C. Bartels, M. Wilf, K. Andes, J. Iong, “Design considerations for wastewater treatment by reverse osmosis”, Water Science and Technology, 2005, Vol. 51, pp. 82-473.
 
[15] X. L. Wang, W. N. Wang, D. X. Wang, “Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions”, Desalination, 2002, Vol. 145, pp. 115-122.
 
[16] H. Strathmann, “Membranes and Membrane Separation Processes”, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
 
[17] Y. H. See Toh, “Green asymmetric molecule manufacture using organic solvent nanofiltration and homogeneous catalyst recycle”, in: Department of Chemical Engineering and Chemical Technology, Imperial College – London, London SW7 2BY, UK, 2005.
 
[18] W. Stumm, “Aquatic colloids as chemical reactants. Surface structure and reactivity”, Colloids and Surfaces, 1993, Vol. 73, pp, 1-18.
 
[19] C. Tang, Q. Fu, C. Criddle, J. Leckie, “Effect of flux (trans membrane pressure) and membrane properties on fouling and rejection of reverse osmosis and Nanofiltration membranes treating perfluoro octane sulfonate containing wastewater”, Environmental Science & Technology, 2007,Vol. 41, pp. 2008-2014.
 
[20] M. Taniguchi, J. Kilduff, G. Belfort, “Modes of natural organic matter fouling during ultrafiltration”, Environmental Science & Technology, 2003, Vol. 37, pp. 1676-1683.
 
[21] E. Vrijenhoek, S. Hong, M. Elimelech,“Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and Nanofiltration membranes”, Journal of Membrane Science, 2001, Vol. 188, pp. 115-128.
 
[22] T. dev Naylor, “Polymer Membranes”, Rapra Technology Limited, 1996, Volume8, No. 5.
 
[23] مداینی. سیاوش، احمد. رحیم پور، "فرآیندهای غشایی صنعتی"، کرمانشاه، انتشارات چشمه هنر و دانش- انتشارات دانشگاه رازی، چاپ اول، 1384.
 
[24] رحیم پور. احمد، "ساخت غشاء اولترافیلتراسیون بر پایه پلی­سولفون و پلی­اترسولفون برای تغلیظ شیر" پایان نامه کارشناسی ارشد مهندسی شیمی، دانشگاه رازی کرمانشاه، اسفند 87.
[25] M. Y. Lone, p. Russel, P. G. Luiz, “A New generation of trak etched membrane for microfiltration and nanofiltration. Part I. preparation and characterization”, Journal of Membrane Science, 1996, Vol. 118, pp. 239-245.
 
[26] R. E. Kesting, “Synthetic polymeric membranes”, Wiley, NewYork, 1985.
 
[27] Ch. Zhao, J. Xue, F. Ran, Sh. Sun, Modification of polyethersulfone membranes – A review of methods. Progress in Materials Science 58 (2013) 76–150.
 
[28] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng, "Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties," Procedia Engineering, vol. 27, pp. 632-637, 2012.
 
[29] H. Iida, K. Takayanagi, T. Nakanishi, and T. Osaka, "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis," Journal of Colloid and Interface Science, vol. 314, no. 1, pp. 274-280, 2007.
 
[30] Y. Huang, Y. Wang, Q. Pan, Y. Wang, X. Ding, K. Xu, N. Li, Q. Wen, Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Analytica Chimica Acta 877 (2015) 90–99.
 
[31] ف، حقیقی،ش، کریمی، ز،سجادی، ز، طالب پور، آشنایی با نرم­افزارهایی کاربردی درعلم شیمی، هشتمین سمینار آموزش شیمی ایران، دانشکده شیمی دانشگاه سمنان، (1392)، 19-1.
 
[32] R. E. KIRK, Experimental Design. Handbook of Psychology, Second Edition, edited by Irving B. Weiner. Copyright © 2013 John Wiley & Sons, Inc.
 
[33] مهدی بشیری ، فاطمه فتوحی. کتاب طراحی و تحلیل آزمایش ها با تاکید بر دو نرم افزار DESIGN EXPERT و MINITAB. انتشارات دانشگاه شاهد. 1389.
 
[34] A. R, Abasi, K, Akbari, A , Morsali, Ultrasonic sonochemistry, 19, (2012), 846-852.
 
[35] Y. Huang, Y. Wang, Q. Pan, Y. Wang, X. Ding, K. Xu, N. Li, Q. Wen, Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Analytica Chimica Acta 877 (2015) 90–99.
 
[36] S. H Xia, M, Ni, Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter remova Journal of Membrane Science 473 (2015) 54–62.
 
[37] ن،قائمی، پ، صفری، بررسی عملکرد غشاء لایه نازک نانوفیلتراسیون به منظور حذف رنگ از آب با استفاده از نرم افزار مینی­تب، (1397)، 3 – 1.
 
[38] N. Fu, L. Li, K. Liu, Ch. K. Kim, J. Li, T. Zhu, J. Lia, B. Tanga, A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Journal of Talanta 197 (2019) 567–577.
 
[39] P. Qu, H. Tang, Y. Gao, Li. Zhang, S. Wang, Polyethersulfone Composite Membrane Blended with Cellulose Fibrils. BioResources, 2010. 5(4): p. 2323-2336.
 
[40] N. Nasrollahi, V. Vatanpour, S. Aber, N. Mohammad Mahmoodi, Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology (2017). 10. 034.
 
[41] Q. Shi, Y. Su, Sh. Zhu, Ch. Li, Y. Zhao, Zh. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. Journal of Membrane Science 303 (2007) 204–212.
 
[42] Y. Duan, Ch. B. Sangani, R. K. Ameta, Thermal, SEM, AFM, BET and biological analysis of newly synthesized Fe2+/Fe3+ based MOIFs. Journal of Molecular Liquids 295 (2019) 111709.
 
[43] V. B. Mohan, K. Jayaraman, D. Bhattacharyya, Brunauer–Emmett–Teller (BET) Specific Surface Area Analysis of Different Graphene Materials: A Comparison to their Structural Regularity and Electrical Properties. Solid State Communications. (2020). 114004.
 
[44] G. A. Biggs, L. F. Phillips, BET analysis of thermal accommodation coefficients obtained via measurements of the Onsager heat of transport. Chemical Physics Letters 452 (2008) 84–88.
 
[45] M. R. Shirzad Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Journal of Desalination 367 (2015) 255–264.
 
[46] P. Mobarakabad, R. Moghadassi, S. M. Hosseini, Fabrication and characterization of poly(phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination. Journal of Desalination 365 (2015) 227–233.
 
[47] S. M. Mousavi, E. Saljoughi, Z. Ghasemipour, S. A. Hosseini, Preparation and Characterization of Modified Polysulfone Membranes With High Hydrophilic Property Using Variation in Coagulation Bath Temperature and Addition of Surfactant. Society of Plastics Engineers. (2012). 23179.
 
[48] Y. Mansourpanah, S. S. Madaeni, A. Rahimpour, M. Adeli, M. Y. Hashemi, M. R. Moradian, Journal of Desalination 277 (2011) 171–177.
 
[49] M. BELMARES, M. BLANCO, W. A. GODDARD, R. B. ROSS, Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors. Published online in Wiley InterScience (2004). 200­-98.
 
[50] T. A. Makhethaa, R. M. Moutloali, Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. Journal of Membrane Science 554 (2018) 195–210.
 
[51] J. Li, Zh. Xu, Hu. Yang, Li. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science 255 (2009) 4725–4732.
 
[52] P. A. Vinodhini, K. Sangeetha, T. Gomathi, P. N. Sudha, J. Venkatesan, S. Anil, FTIR, XRD and DSC Studies of Nanochitosan, Cellulose acetate and Polyethylene glycol Blend Ultrafiltration Membranes. Journal of Biological Macromolecules. (2017). 03. 122.
 
[53] M. Majewsky, H. Bitter, E. Eiche, H. Horn, Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of the Total Environment 568 (2016) 507–511.
 
[54] S. Livazovic, Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia. June 2016.
 
[55] D. Li, X. Sun, Ch. Gao, M. Dong, Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive. Separation and Purification Technology. (2020). 117144.
 
[56] G. Moradi, S. Zinadini, L. Rajabi, Development of nanofiltration PES membranes incorporated with hydrophilic para hydroxybenzoate alumoxane filler for high flux and antifouling property. Chemical Engineering Research and Design. (2020). 04. 004.
 
[57] M. Sivakumar, D. Raju Mohan, R. Rangarajan, “Studies on cellulose acetatepolysulfone ultrafiltration membranes II. Effect of additive concentration”, Journal of Membrane Science , Vol. 268, pp. 208–219.
 
[58] V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, “Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/ Polyethersulfone nanocomposite” , Journal of Membrane Science, 2011, Vol. 375, pp. 284-294.