جداسازی گازی با استفاده از غشاهای ماتریس آمیخته حاوی نانوذرات سیلیکا عامل‌دار شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی و مهندسی شیمی، دانشکده مهندسی، واحد دامغان، دانشگاه آزاد اسلامی

2 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)

چکیده

هدف اصلی این مقاله بررسی تاثیر عامل‌دار کردن نانوذرات سیلیکا بر خواص ساختاری و عملکرد جداسازی گازی غشاهای ماتریس آمیخته بر پایه پلی (اتر-بلوک-آمید) حاوی نانوذرات سیلیکا می‌باشد. بدین منظور ابتدا نانوذرات سیلیکا با گروه‌های عاملی کربوکسیلی اصلاح شده و از آنها برای ساخت غشاهای ماتریس آمیخته استفاده شد. غشاهای حاصل با استفاده از آزمون‌هایXRD ، DSC،FTIR ، SEM و آزمون تراوش گازی بررسی و تحلیل شدند. نتایج نشان داد که اصلاح شیمیایی نانوذرات سیلیکا و ترکیب گروه‌های کربوکسیلی بر روی سطح آن یک تعامل قوی با ماتریس پلیمر داشته و باعث بهبود توزیع پرکننده در ماتریس غشاء می‌شود. مشاهده شد که بارگذاری 4 درصد وزنی نانوذره سیلیکا عامل‌دار شده با گروه‌های کربوکسیلی در ماتریس پلیمری باعث افزایش تراوایی در فشارهای مختلف می‌شود. غشای دارای 4 درصد نانوذرات سیلیکا اصلاح شده دارای تراوایی CO2، O2 و N2 بترتیب برابر 1/43، 8/2 و 42/0 برر و گزینش‌پذیری O2/N2 (71/6) و CO2/N2 (3/103) در فشار 3 بار بود.

کلیدواژه‌ها


[1]  J. S. P. Tushar, B. Khaire and A. S. Kemse (2018) “District Wise CO2 Emission for Maharashtra State Using AADMI Approach”, International Journal of Scientific Research in Science, Engineering and Technology, 5.
 
[2]  M. N. Anwar, A. Fayyaz, N.F. Sohail, M.F. Khokhar, M. Baqar, A. Yasar, K. Rasool, A. Nazir, M.U.F. Raja, M. Rehan, M. Aghbashlo, M. Tabatabaei and A.S. Nizami (2020) “CO2 utilization: Turning greenhouse gas into fuels and valuable products”, Journal of Environmental Management, 260.
 
[3]  A. Mikhaylov, N. Moiseev, K. Aleshin, and T. Burkhardt (2020) “Global climate change and greenhouse effect Machine Learning Methods and Sustainable Development: Multilayer Metal-Oxides" , researchgate.net, 7, 4.
 
[4]  H. Ritchie and M. Roser (2017) “CO₂ and Greenhouse Gas Emissions - Our World in Data”, OurWorldInData.org.
 
[5]  M. Chawla, H. Saulat, M. Masood Khan, , M. Mahmood Khan, S. Rafiq, L. Cheng, T. Iqbal, M. I. Rasheed, M. Z. Farooq, M. Saeed, N. M. Ahmad , M. B. Khan Niazi, S. Saqib, F. Jamil, A. Mukhtar and N. Muhammad (2020) “Membranes for CO2 /CH4 and CO2/N2 Gas Separation” , Chemical Engineering and Technology, 43, 2, 184–199.
 
[6]  N. F. Himma, A. K. Wardani, N. Prasetya, P. T. P. Aryanti, and I. G. Wenten (2019) “Recent progress and challenges in membrane-based O2/N2 separation”, Reviews in Chemical Engineering, 35, 5, 591–625.
 
[7]  S. Raveshiyan, S. S. Hosseini, and J. Karimi-Sabet (2020) “Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders /polysulfone magnetic mixed matrix membranes”, Chemical Engineering and Processing - Process Intensification, 150.
 
[8]  S. A. S. C. Samarasinghe, C. Y. Chuah, H. E. Karahan, G. S. Sethunga, and T. H. Bae (2020) “Enhanced O2/N2 separation of mixed-matrix membrane filled with pluronic-compatibilized cobalt phthalocyanine particles”, Membranes (Basel),10, 4.
 
[9]  P. Natarajan, B. Sasikumar, S. Elakkiya , G. Arthanareeswaran , A. F. Ismail , W. Youravong and E. Yuliwati (2021) “Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation” , Journal of Natural Gas Science and Engineering, 86, 103720.
 
[10] I. G. B. N. Makertihartha, K. S. Kencana, T. R. Dwiputra, K. Khoiruddin, R. R. Mukti, and I. G. Wenten (2020) “Silica supported SAPO-34 membranes for CO2/N2 separation” , Microporous and Mesoporous Materials, 298, 110068.
 
[11] W. J. Koros (2002) “Gas separation membranes: Needs for combined materials science and processing approaches”, Macromolecular Symposia, 188, 1, 13–22.
 
[12] K. Zarshenas, A. Raisi, and A. Aroujalian (2016) “Mixed matrix membrane of nano-zeolite NaX / poly (ether-block-amide) for gas separation applications” , Journal of Membrane Science, 510, 270–283.
 
[13] S. M. Rassoulinejad-Mousavi, J. Azamat, A. Khataee and Y. Zhang (2020) “Molecular dynamics simulation of water purification using zeolite MFI nanosheets” , Separation and Purification Technology, 234, 116080.
 
[14] A. Marjani, A. T. Nakhjiri, M. Adimi, H. F. Jirandehi, and S. Shirazian (2020) “Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment”, Scientific Reports, 10, 1, 1–11.
 
[15] S.A. Habibiannejad, A. Aroujalian and A. Raisi (2016) “Pebax-1657 mixed matrix membrane containing surface modified multi-walled carbon nanotubes for gas separation”, RSC Advances, 6, 83, 79563–79577.
 
[16] N. Gholamipour, M. Sadeghi and M. Shafiei (2019) “Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefin-Paraffin Separation” , Chemical Engineering and Technology, 42, 11, 2292–2301.
 
[17] A. S. Wiryoatmojo, H. A. Mannan, R. Nasir, H. Mukhtar, D. F. Mohshim, A. Abdulrahman, Z. Man (2019) “Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation performance of mixed matrix membranes” , Polymer Testing, 80, 106152.
 
[18] A. H. Saeedi Dehaghani and V. Pirouzfar(2017) “Preparation of High-Performance Membranes Derived from Poly(4-methyl-1-pentene)/Zinc Oxide Particles”, Chemical Engineering & Technology, 40, 9, 1693–1701.
 
[19] F. Karamouz, H. Maghsoudi and R. Yegani (2018) “Synthesis of High‐Performance Pebax®‐1074/DD3R Mixed‐Matrix Membranes for CO2/CH4 Separation” , Chemical Engineering & Technology, 41, 9,. 1767–1775.
 
[20] M. Mubashir, Y. Yin fong, C. T. Leng, L. K. Keong and N. Jusoh (2020) “Study on the effect of process parameters on CO2/CH4 binary gas separation performance over NH2-MIL-53(Al)/cellulose acetate hollow fiber mixed matrix membrane” , Polymer Testing, 81, 106223.
 
[21] M. Mozafari, R. Abedini and A. Rahimpour (2018) “Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4”, Journal of Materials Chemistry A, 6, 26, 12380–12392.
 
[22] A. Fernández-Barquín, C. Casado-Coterillo, M. Palomino, S. Valencia and A. Irabien (2015)  “LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation”, Chemical Engineering & Technology, 38, 4, 658–666.
 
[23] S. Sorribas, B. Comesaña-Gándara, A. E. Lozano, B. Zornoza, C. Téllez and J. Coronas (2015) “Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation”, RSC Advances, 5, 124, 102392–102398.
 
[24] M. S. Maleh and A. Raisi (2019) “CO2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO2 capture”, RSC Advances, 9, 27, 15542–15553.
 
[25] X. Zou and G. Zhu (2019) Microporous Materials for Separation Membranes. Wiley.
 
[26] S. S. Swain, L. Unnikrishnan, S. Mohanty and S. K. Nayak (2017) “Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures”, Korean Journal of Chemical Engineering, 34, 8, 2119–2134.
 
[27] A. S. Embaye, L. Martínez-Izquierdo, M. Malankowska, C. Téllez, and J. Coronas (2021) “Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications”, Energy and Fuels, 35. American Chemical Society, 17085–17102.
 
[28] A. Ghadimi, T. Mohammadi and N. Kasiri (2015) “Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles)”, International Journal of Hydrogen Energy, 40, 31, 9723–9732.
 
[29] Y. Dai, X.Ruan, Z.Yan, K.Yang, M.Yu, H.Li, W.Zhao and G. He (2016) “Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture”, Separation and Purification Technology, 166, 171–180.
 
[30] H. R. Amedi and M. Aghajani (2017) “Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application”, Microporous and Mesoporous Materials, 247, 124–135.
 
[31] M. Salehi Maleh and A. Raisi (2019) “Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications”, Chemical Engineering Research and Design, 147, 545–560.
 
[32] P. G. Ingole, M. I. Baig, W. K. Choi and H. K. Lee (2016) “Synthesis and characterization of polyamide/polyester thin-film nanocomposite membranes achieved by functionalized TiO2 nanoparticles for water vapor separation”, Journal of Materials Chemistry A, 4, 15, 5592–5604.
 
[33] I. Sadeghi, A. Aroujalian, A. Raisi, B. Dabir and M. Fathizadeh (2013) “Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions”, Journal of Membrane Science, 430, 24–36.
 
[34] R. S. Murali, K. P. Kumar, A. F. Ismail and S. Sridhar (2014) “Nanosilica and H-Mordenite incorporated Poly(ether-block-amide)-1657 membranes for gaseous separations”, Microporous and Mesoporous Materials, 197, 291–298.
 
[35] T. Khosravi and M. Omidkhah (2017) “Preparation of CO2 selective composite membranes using Pebax/CuBTC/PEG-ran-PPG ternary system”, Journal of Energy Chemistry, 26, 3, 530–539.
 
[36] J. H. Kim and Y. M. Lee (2001) “Gas permeation properties of poly (amide-6-b-ethylene oxide) silica hybrid membranes”, Journal of Membrane Science, 193, 2, 209–225.
 
[37] S. H. Hosseini, H. S. G., B. Kiani, M. M. Pour and M. Ghanbari (2014) “Examination of Iran’s crude oil production peak and evaluating the consequences: a system dynamics approach”, Energy Exploration & Exploitation, 32, 673–690.
 
[38] S. Azarshin, J. Moghadasi and Z. A Aboosadi (2017) “Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs”, Energy Exploration & Exploitation, 35, 6, 685–697.
 
[39] H. Rabiee, S. Meshkat Alsadat, M. Soltanieh, S. A. Mousavi and A. Ghadimi (2015) “Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation”, Journal of Industrial and Engineering Chemistry, 27, 223–239.
 
[40] A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari (2017) “Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4 , N2 and H2,” Journal of Membrane Science, 524, 652–662.
 
[41] S. Matavos-Aramyan, M. H. Jazebizadeh, and S. Babaei (2020) “Investigating CO2, O2 and N2 permeation properties of two new types of nanocomposite membranes: Polyurethane/silica and polyesterurethane/silica”, Nano-Structures and Nano-Objects, 21, 100414.
 
[42] C. C. Hu (2020) “Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation”, Journal of Membrane Science, 595.
 
[43] A. Dehghani Kiadehi, A. Rahimpour, M. Jahanshahi, and A. A. Ghoreyshi (2015) “Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation”, Journal of Industrial and Engineering Chemistry, 22, 199–207.
 
[44] R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar (2014) “Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations”, Separation and Purification Technology, 129, 1–8.