استفاده از نانوکامپوزیت الیاف کربنی/ZIF-8 جهت جداسازی سورفکتانت CTAB از آب، مطالعات ایزوترم و سینتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

هدف این پژوهش، تولید نانوماده متخلخل با سطح ویژه بالا جهت افزایش ظرفیت جداسازی سورفکتانت کاتیونی ستیل تری متیل آمونیوم برمید (Cetyltrimethylammonium Bromide, CTAB) از آب است. در راستای این هدف، نانوکامپوزیت‌ مزو و میکرو متخلخل الیاف‌کربنی/ ZIF-8بدون استفاده از سورفکتانت با روش ساده و مقرون به صرفه سنتز رسوبی به صورت درجا با خاصیت فوق آبگریزی و سطح ویژه بالا تولید شد. مهم‌ترین خصوصیات نانوکامپوزیت‌ از جمله تصاویر ریخت‌شناسی، بلورشناسی، اندازه ذرات، سطح ویژه، پیوندهای شیمیایی و ... ارزیابی شد. طبق یافته ها، ذرات ZIF-8 با اندازه بلوری nm 27 حاصل شد. متوسط اندازه 30 تا 50 نانومتر برای ذراتZIF-8 حاصل شد. سطحی زبر با ضخامت پوشش ZIF-8 بین 1/0-2 میکرون برای نانوکامپوزیت الیاف‌کربنی/ZIF-8 حاصل شد. آنالیزهای ظرفیت نانوکامپوزیت‌ به صورت کمی و کیفی با روش‌های استاندارد مطالعه شد. باتوجه به یافته‌های تحقیق، حداکثر جذب mg/g 388 برای سورفکتانت‌ توسط نانوکامپوزیت‌ الیاف‌کربنی/ZIF-8 با سطح ویژه m2/g 260 و تخلخل میکروحفره‌ها و مزوحفره‌ها با اندازه متوسط nm 6/1 و 8/3 حاصل شد. فوق آبگریزی نانوکامپوزیت‌ الیاف-کربنی/ZIF-8 با زاویه ترشوندگی با آب °150 و برخوردهای الکترواستاتیک به عنوان مکانیزم های غالب جداسازی سورفکتانت شناخته شد. عملکرد جاذب در سیستم‌های استاتیکی و دینامیکی با اثر پارامترهای مختلف در این پژوهش بررسی شد. مدلسازی ایزوترم‌‌ و سینتیک بررسی شد که مکانیزم جذب سورفکتانت روی جاذب توسط مدل ایزوترم جذب لانگمویر تفسیر شد و سینتیک مرتبه اول، مکانیزم کنترلی رفتار جاذب در طول زمان است.

کلیدواژه‌ها


[1] E. Ayranci, O. Duman, Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, Journal of hazardous materials 148(1-2) (2007) 75-82.
 
[2] A. Omari, R. Cao, Z. Zhu, X. Xu, A comprehensive review of recent advances on surfactant architectures and their applications for unconventional reservoirs, Journal of Petroleum Science and Engineering 206 (2021) 109025.
 
[3] H. Divandari, A. Hemmati-Sarapardeh, M. Schaffie, M. Ranjbar, Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding, Journal of Petroleum Science and Engineering 174 (2019) 425-436.
 
[4] T. Olmez-Hanci, I. Arslan-Alaton, G. Basar, Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology, Journal of hazardous materials 185(1) (2011) 193-203.
 
[5] J. Beltrán-Heredia, J. Sánchez-Martín, C. Solera-Hernández, Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: Optimisation studies through design of experiments, Chemical Engineering Journal 153(1-3) (2009) 56-61.
 
[6] R. Yavuz, S. Küçükbayrak, Adsorption of an anionic dispersant on lignite, Energy conversion and management 42(18) (2001) 2129-2137.
 
[7] K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review, Ozone: science & engineering 26(4) (2004) 327-343.
 
[8] M. Palmer, H. Hatley, The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review, Water research 147 (2018) 60-72.
 
[9] M. Foschi, P. Capasso, M.A. Maggi, F. Ruggieri, G. Fioravanti, Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides, ACS Omega 6(26) (2021) 16943-16954.
 
[10] P.M. Gore, A. Purushothaman, M. Naebe, X. Wang, B. Kandasubramanian, Nanotechnology for Oil-Water Separation, in: R. Prasad, T. Karchiyappan (Eds.), Advanced Research in Nanosciences for Water Technology, Springer International Publishing, Cham, 2019, pp. 299-339.
 
[11] Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation, NPG Asia Mater. 6 (2014) e101.
 
[12] X.-Q. Chen, B. Zhang, L. Xie, F. Wang, MWCNTs polyurethane sponges with enhanced super-hydrophobicity for selective oil–water separation, Surface Engineering 36(6) (2020) 651-659.
 
[13] C.H. Lee, B. Tiwari, D. Zhang, Y.K. Yap, Water purification: oil–water separation by nanotechnology and environmental concerns, Environmental Science: Nano 4(3) (2017) 514-525.
[14] M.-L. Gao, S.-Y. Zhao, Z.-Y. Chen, L. Liu, Z.-B. Han, Superhydrophobic/Superoleophilic MOF Composites for Oil–Water Separation, Inorganic Chemistry 58(4) (2019) 2261-2264.
 
[15] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(6149) (2013) 974.
 
[16] M. Navarro, B. Seoane, E. Mateo, R. Lahoz, G.F. de la Fuente, J. Coronas, ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports, Journal of Materials Chemistry A 2(29) (2014) 11177-11184.
 
[17] X. Zhou, H.P. Zhang, G.Y. Wang, Z.G. Yao, Y.R. Tang, S.S. Zheng, Zeolitic imidazolate framework as efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate, Journal of Molecular Catalysis A: Chemical 366 (2013) 43-47.
 
[18] K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation, Chemical Communications 52(3) (2016) 473-476.
 
[19] T. Tian, J. Velazquez-Garcia, T.D. Bennett, D. Fairen-Jimenez, Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity, Journal of Materials Chemistry A 3(6) (2015) 2999-3005.
 
[20] S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, W.-S. Ahn, Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications, Catalysis Surveys from Asia 18(4) (2014) 101-127.
 
[21] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li, J. Caro, Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation, Chemistry of Materials 23(8) (2011) 2262-2269.
 
[22] J.-S. Choi, W.-J. Son, J. Kim, W.-S. Ahn, Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered, Microporous and Mesoporous Materials 116(1-3) (2008) 727-731.
 
[23] G. Sargazi, D. Afzali, A. Mostafavi, An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta (V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N 2 adsorption, Journal of Porous Materials 25(6) (2018) 1723-1741.
 
[24] C. Liu, J. Wang, J. Wan, C. Yu, MOF-on-MOF hybrids: Synthesis and applications, Coordination Chemistry Reviews 432 (2021) 213743.
 
[25] O.J. de Lima Neto, A.C. de Oliveira Frós, B.S. Barros, A.F. de Farias Monteiro, J. Kulesza, Rapid and efficient electrochemical synthesis of a zinc-based nano-MOF for Ibuprofen adsorption, New Journal of Chemistry 43(14) (2019) 5518-5524.
 
[26] C. Le Calvez, M. Zouboulaki, C. Petit, L. Peeva, N. Shirshova, One step synthesis of MOF–polymer composites, Rsc Advances 6(21) (2016) 17314-17317.
 
[27] C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, J. Sefcik, Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals, Chemical Engineering Journal 285 (2016) 718-725.
 
[28] Z. Hu, T. Kundu, Y. Wang, Y. Sun, K. Zeng, D. Zhao, Modulated hydrothermal synthesis of highly stable MOF-808 (Hf) for methane storage, ACS Sustainable Chemistry & Engineering 8(46) (2020) 17042-17053.
 
[29] M. Shahmirzaee, A. Hemmati-Sarapardeh, M.M. Husein, M. Schaffie, M. Ranjbar, Development of a powerful zeolitic imidazolate framework (ZIF-8)/carbon fiber nanocomposite for separation of hydrocarbons and crude oil from wastewater, Microporous and Mesoporous Materials 307 (2020) 110463.
 
[30] M. Shahmirzaee, A. Hemmati-Sarapardeh, M.M. Husein, M. Schaffie, M. Ranjbar, ZIF-8/carbon fiber for continuous adsorption of sodium dodecyl sulfate (SDS) from aqueous solutions: Kinetics and equilibrium studies, Journal of Water Process Engineering 44 (2021) 102437.
 
[31] H. Zhu, Q. Zhang, B.-G. Li, S. Zhu, Engineering Elastic ZIF-8-Sponges for Oil–Water Separation, Advanced Materials Interfaces 4(20) (2017) 1700560.
 
[32] Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Separation and purification technology 61(3) (2008) 229-242.
 
[33] A.A. Nikkhah, H. Zilouei, A.R. Keshavarz, Effect of Structural Modification of Polyurethane Foam by Activated Carbon on the Adsorption of Oil Contaminants from Water, Journal of Water and Wastewater; Ab va Fazilab (in persian) 27(2) (2016) 84-93.
 
[34] A.S.A. Khan, Evaluation of thermodynamic parameters of cadmium adsorption on sand from Temkin adsorption isotherm, Turkish journal of chemistry 36(3) (2012) 437-443.
 
[35] J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chemical Engineering Journal 300 (2016) 254-263.
 
[36] Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process biochemistry 34(5) (1999) 451-465.
 
[37] S. Azizian, Kinetic models of sorption: a theoretical analysis, Journal of Colloid and Interface Science 276(1) (2004) 47-52.
[38] F. W John Thomas, B. Crittenden, Adsorption technology and design, Butterworth-Heinemann1998.
 
[39] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Fixed-bed dynamic column adsorption study of methylene blue (MB) onto pine cone, Desalination and Water Treatment 55(4) (2015) 1026-1039.
 
[40] K.S. Bharathi, S.P.T. Ramesh, Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus, Applied Water Science 3(4) (2013) 673-687.
 
[41] R.M. Clark, Evaluating the cost and performance of field-scale granular activated carbon systems, Environmental science & technology 21(6) (1987) 573-580.
 
[42] D.-G. Yu, P. Lu, C. Branford-White, J.-H. Yang, X. Wang, Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid, Nanotechnology 22(43) (2011) 435301.
 
[43] Z. Abbasi, E. Shamsaei, X.-Y. Fang, B. Ladewig, H. Wang, Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption, Journal of Colloid and Interface Science 493 (2017) 150-161.
 
[44] U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation', Nature Nanotechnology 6(9) (2011) 534-534.
 
[45] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and applied chemistry 87(9-10) (2015) 1051-1069.
 
[46] J. Abdi, N.M. Mahmoodi, M. Vossoughi, I. Alemzadeh, Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems, Microporous and Mesoporous Materials 273 (2019) 177-188.
 
[47] C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance, ACS Applied Materials & Interfaces 9(12) (2017) 11106-11115.
 
[48] B. Hachuła, M. Nowak, J. Kusz, Crystal and Molecular Structure Analysis of 2-Methylimidazole, Journal of Chemical Crystallography 40(3) (2010) 201-206.
 
[49] U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction, ACS Catalysis 1(2) (2011) 120-127.
 
[50] J. Liu, J. He, L. Wang, R. Li, P. Chen, X. Rao, L. Deng, L. Rong, J. Lei, NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil, Scientific Reports 6(1) (2016) 23667.
 
[51] C.-s. Wu, Z.-h. Xiong, C. Li, J.-m. Zhang, Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution, RSC advances 5(100) (2015) 82127-82137.
 
[52] J. Li, Y.-n. Wu, Z. Li, B. Zhang, M. Zhu, X. Hu, Y. Zhang, F. Li, Zeolitic Imidazolate Framework-8 with High Efficiency in Trace Arsenate Adsorption and Removal from Water, The Journal of Physical Chemistry C 118(47) (2014) 27382-27387.
 
[53] M.C. Ncibi, S. Gaspard, M. Sillanpää, As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants, Journal of Hazardous Materials 286 (2015) 195-203.
 
[54] M. Doğan, M. Alkan, Adsorption kinetics of methyl violet onto perlite, Chemosphere 50(4) (2003) 517-528.
 
[55] R.R. Shettigar, N.M. Misra, K. Patel, Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids, Journal of Petroleum Exploration and Production Technology 8(2) (2018) 597-606.
 
[56] U. Nithiyanantham, S.R. Ede, M.F. Ozaydin, H. Liang, A. Rathishkumar, S. Kundu, Low temperature, shape-selective formation of Sb 2 Te 3 nanomaterials and their thermoelectric applications, RSC advances 5(109) (2015) 89621-89634.
 
[57] L. Harutyunyan, G. Pirumyan, Purification of waters from anionic and cationic surfactants by natural zeolites, ԵՊՀ Գիտական տեղեկագիր-քիմիա և կենսաբանություն 236(1) (2015) 21-28.
 
[58] S. Koner, A. Pal, A. Adak, Cationic surfactant adsorption on silica gel and its application for wastewater treatment, Desalination and Water Treatment 22(1-3) (2010) 1-8.
 
[59] A.A. Siyal, M.R. Shamsuddin, A. Low, Fly ash based geopolymer for the adsorption of cationic and nonionic surfactants from aqueous solution – A feasibility study, Materials Letters 283 (2021) 128758.
 
[60] Z. Gönder, I. Vergili, Y. Kaya, H. Barlas, Adsorption of cationic and anionic surfactants onto organic polymer resin Lewatit VPOC 1064 MD PH, Environmental geochemistry and health 32(4) (2010) 267-273.
 
[61] Z. Yaneva, B. Koumanova, V. Meshko, Dynamic studies of nitrophenols adsorption on perfil in a fixed-bed column: Application of single and two resistance model, Water Science and Technology 62(4) (2010) 883-891.
[62] M.N. Khan, U. Zareen, Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water, Journal of hazardous materials 133(1-3) (2006) 269-275.
 
[63] A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads, Chemical Engineering Journal 217 (2013) 426-434.
 
[64] A.S. Özcan, A. Özcan, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, Journal of Colloid and Interface Science 276(1) (2004) 39-46.
 
[65] T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides, Journal of Hazardous Materials 125(1) (2005) 121-129.
 
[66] R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Liu, Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column, Journal of hazardous materials 141(3) (2007) 713-718.
 
[67] O. Hamdaoui, Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns, Journal of hazardous materials 138(2) (2006) 293-303.
 
[68] Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process biochemistry 39(5) (2004) 599-613.
 
[69] M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 465 (2015) 67-76.
 
[70] E.E. Meyer, K.J. Rosenberg, J. Israelachvili, Recent progress in understanding hydrophobic interactions, Proceedings of the National Academy of Sciences 103(43) (2006) 15739-15746.