[1] E. Ayranci, O. Duman, Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy, Journal of hazardous materials 148(1-2) (2007) 75-82.
[2] A. Omari, R. Cao, Z. Zhu, X. Xu, A comprehensive review of recent advances on surfactant architectures and their applications for unconventional reservoirs, Journal of Petroleum Science and Engineering 206 (2021) 109025.
[3] H. Divandari, A. Hemmati-Sarapardeh, M. Schaffie, M. Ranjbar, Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding, Journal of Petroleum Science and Engineering 174 (2019) 425-436.
[4] T. Olmez-Hanci, I. Arslan-Alaton, G. Basar, Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H2O2/UV-C process by using the capabilities of response surface methodology, Journal of hazardous materials 185(1) (2011) 193-203.
[5] J. Beltrán-Heredia, J. Sánchez-Martín, C. Solera-Hernández, Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant: Optimisation studies through design of experiments, Chemical Engineering Journal 153(1-3) (2009) 56-61.
[6] R. Yavuz, S. Küçükbayrak, Adsorption of an anionic dispersant on lignite, Energy conversion and management 42(18) (2001) 2129-2137.
[7] K. Ikehata, M.G. El-Din, Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review, Ozone: science & engineering 26(4) (2004) 327-343.
[8] M. Palmer, H. Hatley, The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review, Water research 147 (2018) 60-72.
[9] M. Foschi, P. Capasso, M.A. Maggi, F. Ruggieri, G. Fioravanti, Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides, ACS Omega 6(26) (2021) 16943-16954.
[10] P.M. Gore, A. Purushothaman, M. Naebe, X. Wang, B. Kandasubramanian, Nanotechnology for Oil-Water Separation, in: R. Prasad, T. Karchiyappan (Eds.), Advanced Research in Nanosciences for Water Technology, Springer International Publishing, Cham, 2019, pp. 299-339.
[11] Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation, NPG Asia Mater. 6 (2014) e101.
[12] X.-Q. Chen, B. Zhang, L. Xie, F. Wang, MWCNTs polyurethane sponges with enhanced super-hydrophobicity for selective oil–water separation, Surface Engineering 36(6) (2020) 651-659.
[13] C.H. Lee, B. Tiwari, D. Zhang, Y.K. Yap, Water purification: oil–water separation by nanotechnology and environmental concerns, Environmental Science: Nano 4(3) (2017) 514-525.
[14] M.-L. Gao, S.-Y. Zhao, Z.-Y. Chen, L. Liu, Z.-B. Han, Superhydrophobic/Superoleophilic MOF Composites for Oil–Water Separation, Inorganic Chemistry 58(4) (2019) 2261-2264.
[15] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(6149) (2013) 974.
[16] M. Navarro, B. Seoane, E. Mateo, R. Lahoz, G.F. de la Fuente, J. Coronas, ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports, Journal of Materials Chemistry A 2(29) (2014) 11177-11184.
[17] X. Zhou, H.P. Zhang, G.Y. Wang, Z.G. Yao, Y.R. Tang, S.S. Zheng, Zeolitic imidazolate framework as efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate, Journal of Molecular Catalysis A: Chemical 366 (2013) 43-47.
[18] K. Liang, C.J. Coghlan, S.G. Bell, C. Doonan, P. Falcaro, Enzyme encapsulation in zeolitic imidazolate frameworks: a comparison between controlled co-precipitation and biomimetic mineralisation, Chemical Communications 52(3) (2016) 473-476.
[19] T. Tian, J. Velazquez-Garcia, T.D. Bennett, D. Fairen-Jimenez, Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity, Journal of Materials Chemistry A 3(6) (2015) 2999-3005.
[20] S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, W.-S. Ahn, Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications, Catalysis Surveys from Asia 18(4) (2014) 101-127.
[21] H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y.-S. Li, J. Caro, Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H2/C3H8 Molecular Sieve Separation, Chemistry of Materials 23(8) (2011) 2262-2269.
[22] J.-S. Choi, W.-J. Son, J. Kim, W.-S. Ahn, Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered, Microporous and Mesoporous Materials 116(1-3) (2008) 727-731.
[23] G. Sargazi, D. Afzali, A. Mostafavi, An efficient and controllable ultrasonic-assisted microwave route for flower-like Ta (V)–MOF nanostructures: preparation, fractional factorial design, DFT calculations, and high-performance N 2 adsorption, Journal of Porous Materials 25(6) (2018) 1723-1741.
[24] C. Liu, J. Wang, J. Wan, C. Yu, MOF-on-MOF hybrids: Synthesis and applications, Coordination Chemistry Reviews 432 (2021) 213743.
[25] O.J. de Lima Neto, A.C. de Oliveira Frós, B.S. Barros, A.F. de Farias Monteiro, J. Kulesza, Rapid and efficient electrochemical synthesis of a zinc-based nano-MOF for Ibuprofen adsorption, New Journal of Chemistry 43(14) (2019) 5518-5524.
[26] C. Le Calvez, M. Zouboulaki, C. Petit, L. Peeva, N. Shirshova, One step synthesis of MOF–polymer composites, Rsc Advances 6(21) (2016) 17314-17317.
[27] C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, J. Sefcik, Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals, Chemical Engineering Journal 285 (2016) 718-725.
[28] Z. Hu, T. Kundu, Y. Wang, Y. Sun, K. Zeng, D. Zhao, Modulated hydrothermal synthesis of highly stable MOF-808 (Hf) for methane storage, ACS Sustainable Chemistry & Engineering 8(46) (2020) 17042-17053.
[29] M. Shahmirzaee, A. Hemmati-Sarapardeh, M.M. Husein, M. Schaffie, M. Ranjbar, Development of a powerful zeolitic imidazolate framework (ZIF-8)/carbon fiber nanocomposite for separation of hydrocarbons and crude oil from wastewater, Microporous and Mesoporous Materials 307 (2020) 110463.
[30] M. Shahmirzaee, A. Hemmati-Sarapardeh, M.M. Husein, M. Schaffie, M. Ranjbar, ZIF-8/carbon fiber for continuous adsorption of sodium dodecyl sulfate (SDS) from aqueous solutions: Kinetics and equilibrium studies, Journal of Water Process Engineering 44 (2021) 102437.
[31] H. Zhu, Q. Zhang, B.-G. Li, S. Zhu, Engineering Elastic ZIF-8-Sponges for Oil–Water Separation, Advanced Materials Interfaces 4(20) (2017) 1700560.
[32] Y. Liu, Y.-J. Liu, Biosorption isotherms, kinetics and thermodynamics, Separation and purification technology 61(3) (2008) 229-242.
[33] A.A. Nikkhah, H. Zilouei, A.R. Keshavarz, Effect of Structural Modification of Polyurethane Foam by Activated Carbon on the Adsorption of Oil Contaminants from Water, Journal of Water and Wastewater; Ab va Fazilab (in persian) 27(2) (2016) 84-93.
[34] A.S.A. Khan, Evaluation of thermodynamic parameters of cadmium adsorption on sand from Temkin adsorption isotherm, Turkish journal of chemistry 36(3) (2012) 437-443.
[35] J.-P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chemical Engineering Journal 300 (2016) 254-263.
[36] Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process biochemistry 34(5) (1999) 451-465.
[37] S. Azizian, Kinetic models of sorption: a theoretical analysis, Journal of Colloid and Interface Science 276(1) (2004) 47-52.
[38] F. W John Thomas, B. Crittenden, Adsorption technology and design, Butterworth-Heinemann1998.
[39] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Fixed-bed dynamic column adsorption study of methylene blue (MB) onto pine cone, Desalination and Water Treatment 55(4) (2015) 1026-1039.
[40] K.S. Bharathi, S.P.T. Ramesh, Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus, Applied Water Science 3(4) (2013) 673-687.
[41] R.M. Clark, Evaluating the cost and performance of field-scale granular activated carbon systems, Environmental science & technology 21(6) (1987) 573-580.
[42] D.-G. Yu, P. Lu, C. Branford-White, J.-H. Yang, X. Wang, Polyacrylonitrile nanofibers prepared using coaxial electrospinning with LiCl solution as sheath fluid, Nanotechnology 22(43) (2011) 435301.
[43] Z. Abbasi, E. Shamsaei, X.-Y. Fang, B. Ladewig, H. Wang, Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption, Journal of Colloid and Interface Science 493 (2017) 150-161.
[44] U. Holzwarth, N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation', Nature Nanotechnology 6(9) (2011) 534-534.
[45] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and applied chemistry 87(9-10) (2015) 1051-1069.
[46] J. Abdi, N.M. Mahmoodi, M. Vossoughi, I. Alemzadeh, Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems, Microporous and Mesoporous Materials 273 (2019) 177-188.
[47] C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance, ACS Applied Materials & Interfaces 9(12) (2017) 11106-11115.
[48] B. Hachuła, M. Nowak, J. Kusz, Crystal and Molecular Structure Analysis of 2-Methylimidazole, Journal of Chemical Crystallography 40(3) (2010) 201-206.
[49] U.P.N. Tran, K.K.A. Le, N.T.S. Phan, Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction, ACS Catalysis 1(2) (2011) 120-127.
[50] J. Liu, J. He, L. Wang, R. Li, P. Chen, X. Rao, L. Deng, L. Rong, J. Lei, NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil, Scientific Reports 6(1) (2016) 23667.
[51] C.-s. Wu, Z.-h. Xiong, C. Li, J.-m. Zhang, Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution, RSC advances 5(100) (2015) 82127-82137.
[52] J. Li, Y.-n. Wu, Z. Li, B. Zhang, M. Zhu, X. Hu, Y. Zhang, F. Li, Zeolitic Imidazolate Framework-8 with High Efficiency in Trace Arsenate Adsorption and Removal from Water, The Journal of Physical Chemistry C 118(47) (2014) 27382-27387.
[53] M.C. Ncibi, S. Gaspard, M. Sillanpää, As-synthesized multi-walled carbon nanotubes for the removal of ionic and non-ionic surfactants, Journal of Hazardous Materials 286 (2015) 195-203.
[54] M. Doğan, M. Alkan, Adsorption kinetics of methyl violet onto perlite, Chemosphere 50(4) (2003) 517-528.
[55] R.R. Shettigar, N.M. Misra, K. Patel, Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids, Journal of Petroleum Exploration and Production Technology 8(2) (2018) 597-606.
[56] U. Nithiyanantham, S.R. Ede, M.F. Ozaydin, H. Liang, A. Rathishkumar, S. Kundu, Low temperature, shape-selective formation of Sb 2 Te 3 nanomaterials and their thermoelectric applications, RSC advances 5(109) (2015) 89621-89634.
[57] L. Harutyunyan, G. Pirumyan, Purification of waters from anionic and cationic surfactants by natural zeolites, ԵՊՀ Գիտական տեղեկագիր-քիմիա և կենսաբանություն 236(1) (2015) 21-28.
[58] S. Koner, A. Pal, A. Adak, Cationic surfactant adsorption on silica gel and its application for wastewater treatment, Desalination and Water Treatment 22(1-3) (2010) 1-8.
[59] A.A. Siyal, M.R. Shamsuddin, A. Low, Fly ash based geopolymer for the adsorption of cationic and nonionic surfactants from aqueous solution – A feasibility study, Materials Letters 283 (2021) 128758.
[60] Z. Gönder, I. Vergili, Y. Kaya, H. Barlas, Adsorption of cationic and anionic surfactants onto organic polymer resin Lewatit VPOC 1064 MD PH, Environmental geochemistry and health 32(4) (2010) 267-273.
[61] Z. Yaneva, B. Koumanova, V. Meshko, Dynamic studies of nitrophenols adsorption on perfil in a fixed-bed column: Application of single and two resistance model, Water Science and Technology 62(4) (2010) 883-891.
[62] M.N. Khan, U. Zareen, Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water, Journal of hazardous materials 133(1-3) (2006) 269-275.
[63] A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads, Chemical Engineering Journal 217 (2013) 426-434.
[64] A.S. Özcan, A. Özcan, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, Journal of Colloid and Interface Science 276(1) (2004) 39-46.
[65] T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides, Journal of Hazardous Materials 125(1) (2005) 121-129.
[66] R. Han, Y. Wang, W. Yu, W. Zou, J. Shi, H. Liu, Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column, Journal of hazardous materials 141(3) (2007) 713-718.
[67] O. Hamdaoui, Dynamic sorption of methylene blue by cedar sawdust and crushed brick in fixed bed columns, Journal of hazardous materials 138(2) (2006) 293-303.
[68] Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process biochemistry 39(5) (2004) 599-613.
[69] M. Jian, B. Liu, G. Zhang, R. Liu, X. Zhang, Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 465 (2015) 67-76.
[70] E.E. Meyer, K.J. Rosenberg, J. Israelachvili, Recent progress in understanding hydrophobic interactions, Proceedings of the National Academy of Sciences 103(43) (2006) 15739-15746.