[1] X. Wu, Y. Yu, Z. Qin, and Z. Zhang, (2014) “The advances of post-combustion CO2 capture with chemical solvents: review and guidelines”. Energy Procedia, 63, 1339-1346.
[2] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M., Amann, and Bouallou., (2010) “Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture”. Applied Thermal Engineering, 30, 53-62.
[3] J. C.M. Pires, F.G., Martins, M.C. M., Alvim-Ferraz, and M., Simões, (2011) “Recent developments on carbon capture and storage: an overview”. Chemical engineering research and design, 89, 1446-1460.
[4] E.S., Rubin, H., Mantripragada, A., Marks, P., Versteeg, and J. Kitchin, E.S., Rubin, (2012) “The outlook for improved carbon capture technology”. Progress in energy and combustion science, 38, 630-671.
[5] A., Perejón, L. M., Romeo, Y., Lara, P., A., Lisbona, Martínez, and J.M., Valverde, (2016) “The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior”. Applied Energy, 162, 787-807.
[6] G., Grasa, I., Martínez, M. E., Diego, and J., Abanades, (2014) “Determination of CaO carbonation kinetics under recarbonation conditions”. Energy & Fuels, 28, 4033-4042.
[7] M., Erans, V., Manovic, and E.J., Anthony, (2016) “Calcium looping sorbents for CO2 capture”. Applied Energy,. 180, 722-742.
[8] F.N., Ridha, V., Manovic, A., Macchi, M. A., Anthony, and E.J., Anthony, (2013) “Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles”. Fuel processing technology, 116,284-291.
[9] F.N., Ridha, V., Manovic, Y., Wu, A., Macchi, and E.J., Anthony, (2013) “Post-combustion CO2 capture by formic acid-modified CaO-based sorbents”. International Journal of Greenhouse Gas Control, 16, 21-28.
[10] R.,Sun, Y., Li, S., Wu, C., Liu, H., Liu, and C., Lu, (2013) “Enhancement of CO2 capture capacity by modifying limestone with propionic acid”. Powder technology, 233, 8-14.
[11] Y., Hu, W., Liu, J., Sun, M., Li, X., Yang, Y., Zhang, and M., Xu, (2016) “Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture”. Fuel, 167, 17-24.
[12] Y., Li, R., Sun, H., Liu, and C., Lu, (2011) “Cyclic CO2 capture behavior of limestone modified with pyroligneous acid (PA) during calcium looping cycles”. Industrial & engineering chemistry research, 50, 10222-10228.
[13] Y., Li, C., Zhao, H., Chen, Q., Ren, and L., Duan, (2011) “CO2 capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle”. Energy , 36, 1590-1598
[14] Y., Li, C., Zhao, H.,Chen, C., Liang, L., Duan, and W., Zhou, (2009) “Modified CaO-based sorbent looping cycle for CO2 mitigation”. Fuel, 88, 697-704.
[15] C., Roßkopf, M., Haas, A., M., Faik, Linder, and A l., Wörner, (2014) “Improving powder bed properties for thermochemical storage by adding nanoparticles”. Energy conversion and management, 86, 93-98.
[16] C., Zhu, G., Liu, Q. Yu, , R., Pfeffer, R. N., Dave, and C. H., Nam, (2004) “Sound assisted fluidization of nanoparticle agglomerates”. Powder Technology, 141, 119-123.
[17] H. Nakamura, and S. Watano, (2008) “Fundamental particle fluidization behavior and handling of nano-particles in a rotating fluidized bed”. Powder Technology, 183, 324-332.
[18] M., D. Kashyap, Gidaspow, and M. Driscoll, (2008) “of electric field on the hydrodynamics of fluidized nanoparticles”. Powder Technology, 183, 441-453.
[19] B., Azimi, M., Tahmasebpoor, P.E., Sanchez-Jimenez, A., Perejon, and J.M., Valverde, (2019) “Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents”. Chemical Engineering Journal, 358, 679-690
[20] Q., Yu, R. N., Dave, C., Zhu, J.A., Quevedo, and R., Preffer, (2005) “Enhanced fluidization of nanoparticles in an oscillating magnetic field”. AIChE Juornal, 51, 1971-1979.
[21] A., Nawar, M., Ali, A. H., Khoja, A., Waqas, M., Anwar, and M., (2021) “Mahmood, Enhanced CO2 capture using organic acid structure modified waste eggshell derived CaO sorbent”. Journal of Environmental Chemical Engineering, 9, 104871.
[22] H., Cheng, D., Gong, T., Zhao, T., Wang, and s., Jiang, (2021) “Physicochemical characterization of the performance of acidified modified eggshell cyclic adsorption of CO2”. In Journal of Physics: Conference Series, 012034.
[23] H.R., Radfarnia, and M.C. Iliuta, (2016) “Limestone acidification using citric acid coupled with two-step calcination for improving the CO2 sorbentactivity”. Industrial & Engineering Chemistry Research, 52,7002-7013.