شبیه سازی مولکولی شیرین سازی بیوگاز بوسیله نانو ساختار MIL-47

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده شیمی و مهندسی شیمی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

جذب و جداسازی دی اکسید کربن و هیدروژن سولفید از بیوگاز بوسیله ساختار آلی فلزی MIL-47 توسط روش مونت کارلو بررسی شد. نتایج حاصل از شبیه سازی با داده های آزمایشگاهی موجود هم خوانی خوب و قابل قبولی دارند. در ابتدا ایزوترم های جذب خالص، ترکیب دوتایی و سه تایی گازهای متان، دی اکسید کربن و هیدروژن سولفید نیز بررسی شد. نتایج حاصل از شبیه سازی نشان می دهند که کاهش دما و افزایش فشار، افزایش جذب را به همراه دارند و جذب خالص گاز هیدروژن سولفید در ساختار آلی فلزی MIL-47 نسبت به سایر گازها بیشتر است. گزینش پذیری گاز دی اکسید کربن و هیدروژن سولفید نسبت به گاز متان در ساختار MIL-47 به ترتیب 2/0 و 9/2 در دما و فشار محیط است. بنابراین ساختار MIL-47 برای جذب و جداسازی گاز دی اکسید کربن از بیوگاز مناسب نیست ولی قادر است گاز هیدروژن سولفید را بخوبی جدا کند.

کلیدواژه‌ها

موضوعات


[1]W.-C. Lin, Y.-P. Chen, and C.-P. Tseng (2013) "Pilot-scale chemical–biological system for efficient H2S removal from biogas",  Bioresource technology, 135, 283-291.
[2] Y. Belmabkhout, G. De Weireld, and A. Sayari (2009) "Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas",  Langmuir, 25, 13275-13278.
[3] Z. Sumer, and S. Keskin (2017) "Molecular simulations of MOF adsorbents and membranes for noble gas separations",  Chemical Engineering Science, 164, 108-121.
[4] A. Nalaparaju, M. Khurana, S. Farooq, I. Karimi, and J. Jiang (2015) "CO 2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization",  Chemical Engineering Science, 124, 70-78.
[5] X.-z. Chu, S.-s. Liu, S.-y. Zhou, Y.-j. Zhao, W.-h. Xing, and C.-H. Lee (2016) "Adsorption behaviors of CO2 and CH4 on zeolites JSR and NanJSR using the GCMC simulations",  Adsorption, 22, 1065-1073.
[6] J. Xu, W. Xing, H. Wang, W. Xu, Q. Ding, L. Zhao, W. Guo, and Z. Yan (2016) "Monte Carlo simulation study of the halogenated MIL-47 (V) frameworks: influence of functionalization on H 2 S adsorption and separation properties",  Journal of materials science, 51, 2307-2319.
[7] N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, T. Devic, C. Serre, T. Loiseau, and G. Ferey (2007) "Adsorption of CO 2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments",  Adsorption, 13, 461-467.
[8] B. Liu, and B. Smit (2009) "Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal− organic frameworks",  Langmuir, 25, 5918-5926.
[9] J. R. Karra, and K. S. Walton (2010) "Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal− organic frameworks",  The Journal of Physical Chemistry C, 114, 15735-15740.
[10] L. Hamon, H. Leclerc, A. Ghoufi, L. Oliviero, A. Travert, J.-C. Lavalley, T. Devic, C. Serre, G. Férey, and G. De Weireld (2011) "Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations",  The Journal of Physical Chemistry C, 115, 2047-2056.
[11] A. I. Skoulidas, and D. S. Sholl (2005) "Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations",  The Journal of Physical Chemistry B, 109, 15760-15768.
[12] M. Rahmati, and H. Modarress (2009) "Nitrogen adsorption on nanoporous zeolites studied by Grand Canonical Monte Carlo simulation",  J. Mol. Struct. (Theochem), 901, 110-116.
[13] M. Rahmati, and H. Modarress (2009) "Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous siliceous zeolites at room temperature",  Appl. Surf. Sci., 255, 4773-4778.
[14] Y. Zeng, X. Zhu, Y. Yuan, X. Zhang, and S. Ju (2012) "Molecular simulations for adsorption and separation of thiophene and benzene in Cu-BTC and IRMOF-1 metal–organic frameworks",  Sep. Purif. Technol., 95, 149-156.
[15] M. K. Song, and K. T. No (2007) "Molecular simulation of hydrogen adsorption in organic zeolite",  Catal. Today, 120, 374-382.
[16] G. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou (2010) "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study",  J. Supercrit. Fluids 55, 510-523.
[17] D. H. Jung, D. Kim, T. B. Lee, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, and S. H. Choi (2006) "Grand Canonical Monte Carlo Simulation Study on the Catenation Effect on Hydrogen Adsorption onto the Interpenetrating Metal-Organic Frameworks",  J. Phys. Chem. B, 110, 22987-22990.
[18] L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang, and W. Shen (2007) "Simulations of Binary Mixture Adsorption of Carbon Dioxide and Methane in Carbon Nanotubes: Temperature, Pressure, and Pore Size Effects",  J. Phys. Chem. C 111, 11912-11920.
[19] M. G. Ahunbay, O. Karvan, andA. Erdem-Senatalar (2008) "MTBE adsorption and diffusion in silicalite-1",  Micropor. Mesopor. Mat., 115, 93-97.
[20] M. Rahmati, and H. Modarress (2009) "Nitrogen adsorption on nanoporous zeolites studied by grand canonical Monte Carlo simulation",  Journal of Molecular Structure: THEOCHEM, 901, 110-116.
[21] J. Jiang, S. I. Sandler, M. Schenk, and B. Smit (2005) "Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation",  Physical Review B, 72, 045447.
[22] S. J. Mahdizadeh, and S. F. Tayyari (2012) "Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study",  Journal of molecular modeling, 18, 2699-2708.
[23] R. Babarao, and J. Jiang (2009) "Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal− organic framework: a molecular simulation study",  Journal of the American Chemical Society, 131, 11417-11425.
[24] J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, and H.-C. Zhou (2011) "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks",  Coordination Chemistry Reviews, 255, 1791-1823.
[25] X. Huang, J. Lu, W. Wang, X. Wei, and J. Ding (2016) "Experimental and computational investigation of CO 2 capture on amine grafted metal-organic framework NH2-MIL-101",  Applied Surface Science, 371, 307-313.
[27] N. Rosenbach Jr, H. Jobic, A. Ghoufi, T. Devic, M. Koza, N. Ramsahye, C. Mota, C. Serre, and G. Maurin (2014) "Diffusion of light hydrocarbons in the flexible MIL-53 (Cr) metal–organic framework: a combination of quasi-elastic neutron scattering experiments and molecular dynamics simulations",  The Journal of Physical Chemistry C, 118, 14471-14477.
[28] J. Liu, Y. Wei, P. Li, Y. Zhao, and R. Zou (2017) "Selective H2S/CO2 Separation by Metal–Organic Frameworks Based on Chemical-Physical Adsorption",  The Journal of Physical Chemistry C, 121, 13249-13255.
[29] M. Rahmati, and H. Modarress (2013) "Selectivity of new siliceous zeolites for separation of methane and carbon dioxide by Monte Carlo simulation",  Microporous and Mesoporous Materials, 176, 168-177.