بررسی تاثیر فاصله اسکوپ پسماند از دیواره روتور و دبی جریان خوراک بر میزان انباشتگی گاز و دمای دیواره روتور سانتریفوژ زیربحرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده انرژی، دانشگاه صنعتی شریف

2 دانشیار دانشکده انرژی دانشگاه صنعتی شریف

3 پژوهشگاه علوم هسته ای، سازمان انرژی اتمی ایران

چکیده

در تحقیق حاضر از مخلوط 53-47 درصد وزنی از گازهای فرئون-12 و فرئون-22 استفاده و به صورت تجربی تاثیر فاصله اسکوپ پسماند از دیواره روتور و دبی جریان خوراک بر روی میزان انباشتگی گاز درون روتور و دمای دیواره روتور بررسی شده است. برای این منظور، چهار فاصله اسکوپ پسماند از دیواره (mm 12/6، 5، 4، و 3) و پنج دبی جریان خوراک (g/h 10، 15، 25، ،35 و 40) انتخاب و 20 آزمایش طراحی شد. نتایج نشان داد که، توزیع طولی دمای دیواره روتور از بالا به پایین کاهشی است و درپوش بالایی گرمتر است. با افزایش دبی جریان خوراک به علت افزایش یکنواخت تجمع گاز و تعداد برخوردها با نقاط مختلف روتور، دمای تک تک نقاط دیواره روتور به صورت یکنواخت افزایش یافت و اختلاف دمای بالا و پایین روتور ثابت ماند. باکاهش فاصله اسکوپ پسماند از دیواره و افزایش نیروی پسا وارد بر گاز بالای روتور، دما ناحیه بالایی روتور افزایش یافته و در نتیجه اختلاف دمای بالا و پایین روتور اندکی افزایش پیدا کرد. اختلاف دمای بالا و پایین روتور تنها تابع مشخصات فیزیکی سانتریفوژ از جمله موقعیت اسکوپ پسماند است. بالاترین دمای متوسط روتور k 316 در  فاصله اسکوپ mm 3 و دبی g/h 40 و کمترین دمای متوسط روتور k 305 در فاصله اسکوپ mm12/6 و دبی g/h 10 اندازه­گیری شد.

کلیدواژه‌ها

موضوعات


[1] A. Glaser (2008) “Characteristics of The Gas Centrifuge for Uranium Enrichment”, Science and Global Security, 16, 1-25.
[2] K. Cohen (1951) The Theory of Isotope Separation, McGraw-Hill, New York, USA.
[3] T. Kai, and K. Hasegawa (2000) “Numerical Calculation of Flow and Isotope Separation for SF6 Gas Centrifuge”, Journal of Nuclear Science and Technology, 37, 153-165.
[4] S. C. P. Migliavacca, C. Rodrigues, and C. A. O. Nascimento (1999) “Use of Neural Network for the Simulation of a Gas Centrifuge”, Journal of Nuclear Science and Technology, 36, 364-370.
[5] P. Omnes (2007) “Numerical and Physical Comparisons of Two Models of a Gas Centrifuge”, Computer & Fluids, 36, 1028-1039.
[6] S. R. Auvil, and B. W. Wilkinson (1976) “The Steady and Unsteady State Analysis of a Simple Gas Centrifuge”, AIChE Journal, 22, 564-579.
[7] R. Van Wissen, M. Golombok, and J. Brouwers (2005) “Separation of Carbon Dioxide and Methane in Continuous Countercurrent Gas Centrifuges”, Chemical Engineering Science, 60, 4397-4407.
[8] M. Golombok, and L. Chewter (2004) “Centrifugal Separation for Cleaning Well Gas Streams”, Industrial & Engineering Chemistry Research, 43, 1734-1739.
[9] M. Golombok, and K. Bil (2005) “Removal of CO2 from a Gas Stream Using an Experimental Centrifuge”, Industrial & Engineering Chemistry Research, 44, 4721-4725.
[10] M. H. Sadeghi, M. Outokesh, and J. Karimi-Sabet (2016) “Experimental Investigation of Effects of The Feed Flow Rate and Tail Scoop-Wall Clearance on The Performance of a Gas Centrifuge by Feeding a Freon Mixture”, Separation Science and Technology, 51 (7), 1259-1267.
[11] D.R. Olander (1978) “The Gas Centrifuge”, Scientific American, 27, 239-261.
[12] M.C.V. Andrade, C.A.O. Nascimento, and S.C.P. Migliavacca (2005) “Detection of Outliers in a Gas Centrifuge Experimental Data”, Brazilian Journal of Chemical Engineering, 22, 389-400.