[1] A. Mahecha-Botero, Z. Chen, J. R. Grace, S. S. E. H. Elnashaie, C. Jim Lim, M. Rakib, I. Yasuda,Y. Shirasaki; (2009), " Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study", Chemical Engineering Science, 64, 3598-3613
[2] F. Gallucci, A. Comite, G. Capannelli,A. Basile; (2006), "Steam reforming of methane in a membrane reactor: An industrial case study", Industrial and Engineering Chemistry Research, 45, 2994-3000
[3] L. C. Silva, V. V. Murata, C. E. Hori,A. J. Assis; (2010), "Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor", Optimization and Engineering, 1-18
[4] E. L. G. Oliveira, C. A. Grande,A. E. Rodrigues; (2010), "Methane steam reforming in large pore catalyst", Chemical Engineering Science, 65, 1539-1550
[5] S. Grevskott, T. Rusten, M. Hillestad, E. Edwin,O. Olsvik, (2001), "Modelling and simulation of a steam reforming tube with furnace", Chemical Engineering Science, 56, 597-603
[6] Y. N. Wang,A. E. Rodrigues; (2005), "Hydrogen production from steam methane reforming coupled with in situ CO2 capture: Conceptual parametric study", Fuel, 84, 1778-1789
[7] H. K. Rusten, E. Ochoa-Fernández, H. Lindborg, D. Chen,H. A. Jakobsen; (2007), "Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2-acceptor", Industrial and Engineering Chemistry Research, 46, 8729-8737
[8] V. L. Barrio, G. Schaub, M. Rohde, S. Rabe, F. Vogel, J. F. Cambra, P. L. Arias,M. B. Güemez; (2007), "Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization", International Journal of Hydrogen Energy, 32, 1421-1428
[9] H. T. J. Reijers, J. Boon, G. D. Elzinga, P. D. Cobden, W. G. Haije,R. W. Van Den Brink; (2009), "Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation", Industrial and Engineering Chemistry Research, 48, 6966-6974
[10] H. T. J. Reijers, J. Boon, G. D. Elzinga, P. D. Cobden, W. G. Haije,R. W. Van Den Brink; (2009), "Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming", Industrial and Engineering Chemistry Research, 48, 6975-6982
[11] A. P. Murray,T. S. Snyder; (1985), "Steam-methane reformer kinetic computer model with heat transfer and geometry options", Industrial & Engineering Chemistry Process Design and Development, 24, 286-294
[12] F. Gallucci, L. Paturzo,A. Basile; (2004), "A simulation study of the steam reforming of methane in a dense tubular membrane reactor", International Journal of Hydrogen Energy, 29, 611-617
[13] W. Yu, T. Ohmori, T. Yamamoto, A. Endo, M. Nakaiwa, T. Hayakawa, N. Itoh; (2005), "Simulation of a porous ceramic membrane reactor for hydrogen production", International Journal of Hydrogen Energy, 30, 1071-1079
[14] F. A. N. Fernandes,A. B. Soares Jr; (2006), "Modeling of methane steam reforming in a palladium membrane reactor", Latin American Applied Research, 36, 155-161
[15] K. S. Patel,A. K. Sunol; (2007), "Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor", International Journal of Hydrogen Energy, 32, 2344-2358
[16] W. Yu, T. Ohmori, S. Kataoka, T. Yamamoto, A. Endo, M. Nakaiwa,N. Itoh; (2008), "A comparative simulation study of methane steam reforming in a porous ceramic membrane reactor using nitrogen and steam as sweep gases", International Journal of Hydrogen Energy, 33, 685-692
[17] M. Kuroki, S. Ookawara,K. Ogawa; (2009), "A high-fidelity CFD model of methane steam reforming in a packed bed reactor", Journal of Chemical Engineering of Japan, 42, 73-78
[18] A. Caravella, F. P. Di Maio,A. Di Renzo; (2010), "Computational study of staged membrane reactor configurations for methane steam reforming. II. Effect of number of stages and catalyst amount", AIChE Journal, 56, 259-267
[19] A. Caravella, F. P. Di Maio,A. Di Renzo; (2010), "Computational study of staged membrane reactor configurations for methane steam reforming. I. Optimization of stage lengths", AIChE Journal, 56, 248-258
[20] S. Hara, K. Haraya, G. Barbieri,E. Drioli; (2010), "Estimating limit conversion for methane steam reforming in a palladium membrane reactor using countercurrent sweep gas", Asia-Pacific Journal of Chemical Engineering, 5, 48-59
[21] M. Levent, D. J. Gunn,M. A. El-Bousiffi; (2003), "Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor", International Journal of Hydrogen Energy, 28, 945-959
[22] X. Zhai, S. Ding, Y. Cheng,Y. Jin; (2010) "CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor", International Journal of Hydrogen Energy, 35.11, 5383-5392.
[23] M. A. Rakib,K. I. Alhumaizi; (2005), "Modeling of a fluidized bed membrane reactor for the steam reforming of methane: Advantages of oxygen addition for favorable hydrogen production", Energy and Fuels, 19, 2129-2139
[24] A. Sarvar-Amini, R. Sotudeh-Gharebagh, H. Bashiri, N. Mostoufi,A. Haghtalab; (2007), "Sequential simulation of a fluidized bed membrane reactor for the steam methane reforming using ASPEN PLUS", Energy and Fuels, 21, 3593-3598
[25] A. M. Dehkordi,M. Memari; (2009), "Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor", International Journal of Hydrogen Energy, 34, 1275-1291
[26] J. P. Jakobsen, E. Halmøy; (2009), "Reactor modeling of sorption enhanced steam methane reforming", Energy Procedia 1.1, 725-732
[27] K. Johnsen, J. R. Grace, S. S. E. H. Elnashaie, L. Kolbeinsen,D. Eriksen; (2006), "Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor", Industrial and Engineering Chemistry Research, 45, 4133-4144
[28] W. Shuyan, Y. Lijie, L. Huilin, H. Yurong, J. Ding, L. Guodong,L. Xiang; (2008), "Simulation of effect of catalytic particle clustering on methane steam reforming in a circulating fluidized bed reformer", Chemical Engineering Journal, 139, 136-146
[29] P. Prasad,S. S. E. H. Elnashaie; (2003), "Coupled steam and oxidative reforming for hydrogen production in a novel membrane circulating fluidized-bed reformer", Industrial and Engineering Chemistry Research, 42, 4715-4722
[30] Z. Chen, P. Prasad, Y. Yan,S. Elnashaie; (2003), "Simulation for steam reforming of natural gas with oxygen input in a novel membrane reformer", Fuel Processing Technology, 83, 235-252
[31] Z. Chen, F. Po, J. R. Grace, C. Jim Lim, S. Elnashaie, A. Mahecha-Botero, M. Rakib, Y. Shirasaki,I. Yasuda; (2008), "Sorbent-enhanced/membrane-assisted steam - methane reforming", Chemical Engineering Science, 63, 170-182
[32] J. Xu,G. F. Froment; (1989), "Methane steam reforming, methanation and water-gas shift, I. Intrinsic kinetics", AIChE Journal, 35, 88-96
[33] S. A. Bhat,J. Sadhukhan; (2009), "Process intensification aspects for steam methane reforming: An overview", AIChE Journal, 55, 408-422