پیش بینی اثر پارامترهای عملیاتی بر بازیابی هیدروژن در فرآیند ریفرمینگ متان به همراه بخار آب در یک رآکتور غشایی بستر سیال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی گروه صنایع غذایی، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر

2 دانشجوی کارشناسی گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد

4 گروه مهندسی شیمی، دانشگاه مهندسی فناوری های نوین قوچان

چکیده

در این مطالعه یک مدل ریاضی برای فرآیند تولید هیدروژن از طریق ریفرمینگ متان با بخار آب در یک رآکتور بستر سیال غشایی به صورت یک بعدی، هم فشار و غیر هم دما توسعه داده شده است. موازنه جرم و انرژی برای فاز واکنش دهنده و جاروب کننده، یک دستگاه معادلات دیفرانسیل ایجاد می‌کند که از حل همزمان آنها توزیع غلظت و دما در طول رآکتور به دست می آید. پس از مقایسه نتایج حاصل از مدل با داده‌های تجربی و اطمینان از صحت مدل ریاضی، اثر مقدار و روش گرمادهی به راکتور و نیز پارامترهای عملیاتی شامل دمای خوراک ورودی، نسبت بخار و گاز جاروب کننده به متان ورودی و فشار بر مقدار هیدروژن بازیابی شده و تبدیل متان بررسی شده است. مطابق نتایج این مطالعه می‌توان بازیابی هیدروژن و تبدیل متان در رآکتور غشایی را با گرمادهی توزیع شده به صورت صعودی و افزایش دمای خوراک افزایش داد.

کلیدواژه‌ها


[1] A. Mahecha-Botero, Z. Chen, J. R. Grace, S. S. E. H. Elnashaie, C. Jim Lim, M. Rakib, I. Yasuda,Y. Shirasaki; (2009), " Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study", Chemical Engineering Science, 64, 3598-3613
 
[2] F. Gallucci, A. Comite, G. Capannelli,A. Basile; (2006), "Steam reforming of methane in a membrane reactor: An industrial case study", Industrial and Engineering Chemistry Research, 45, 2994-3000
 
[3] L. C. Silva, V. V. Murata, C. E. Hori,A. J. Assis; (2010), "Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor", Optimization and Engineering, 1-18
 
[4] E. L. G. Oliveira, C. A. Grande,A. E. Rodrigues; (2010), "Methane steam reforming in large pore catalyst", Chemical Engineering Science, 65, 1539-1550
 
[5] S. Grevskott, T. Rusten, M. Hillestad, E. Edwin,O. Olsvik, (2001), "Modelling and simulation of a steam reforming tube with furnace", Chemical Engineering Science, 56, 597-603
 
[6] Y. N. Wang,A. E. Rodrigues; (2005), "Hydrogen production from steam methane reforming coupled with in situ CO2 capture: Conceptual parametric study", Fuel, 84, 1778-1789
 
[7] H. K. Rusten, E. Ochoa-Fernández, H. Lindborg, D. Chen,H. A. Jakobsen; (2007), "Hydrogen production by sorption-enhanced steam methane reforming using lithium oxides as CO2-acceptor", Industrial and Engineering Chemistry Research, 46, 8729-8737
 
[8] V. L. Barrio, G. Schaub, M. Rohde, S. Rabe, F. Vogel, J. F. Cambra, P. L. Arias,M. B. Güemez; (2007), "Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization", International Journal of Hydrogen Energy, 32, 1421-1428
 
[9] H. T. J. Reijers, J. Boon, G. D. Elzinga, P. D. Cobden, W. G. Haije,R. W. Van Den Brink; (2009), "Modeling study of the sorption-enhanced reaction process for CO2 capture. I. Model development and validation", Industrial and Engineering Chemistry Research, 48, 6966-6974
 
[10] H. T. J. Reijers, J. Boon, G. D. Elzinga, P. D. Cobden, W. G. Haije,R. W. Van Den Brink; (2009), "Modeling study of the sorption-enhanced reaction process for CO2 capture. II. Application to steam-methane reforming", Industrial and Engineering Chemistry Research, 48, 6975-6982
 
[11] A. P. Murray,T. S. Snyder; (1985), "Steam-methane reformer kinetic computer model with heat transfer and geometry options", Industrial & Engineering Chemistry Process Design and Development, 24, 286-294
 
[12] F. Gallucci, L. Paturzo,A. Basile; (2004), "A simulation study of the steam reforming of methane in a dense tubular membrane reactor", International Journal of Hydrogen Energy, 29, 611-617
 
[13] W. Yu, T. Ohmori, T. Yamamoto, A. Endo, M. Nakaiwa, T. Hayakawa, N. Itoh; (2005), "Simulation of a porous ceramic membrane reactor for hydrogen production", International Journal of Hydrogen Energy, 30, 1071-1079
 
[14] F. A. N. Fernandes,A. B. Soares Jr; (2006), "Modeling of methane steam reforming in a palladium membrane reactor", Latin American Applied Research, 36, 155-161
 
[15] K. S. Patel,A. K. Sunol; (2007), "Modeling and simulation of methane steam reforming in a thermally coupled membrane reactor", International Journal of Hydrogen Energy, 32, 2344-2358
 
[16] W. Yu, T. Ohmori, S. Kataoka, T. Yamamoto, A. Endo, M. Nakaiwa,N. Itoh; (2008), "A comparative simulation study of methane steam reforming in a porous ceramic membrane reactor using nitrogen and steam as sweep gases", International Journal of Hydrogen Energy, 33, 685-692
 
[17] M. Kuroki, S. Ookawara,K. Ogawa; (2009), "A high-fidelity CFD model of methane steam reforming in a packed bed reactor", Journal of Chemical Engineering of Japan, 42, 73-78
[18] A. Caravella, F. P. Di Maio,A. Di Renzo; (2010), "Computational study of staged membrane reactor configurations for methane steam reforming. II. Effect of number of stages and catalyst amount", AIChE Journal, 56, 259-267
[19] A. Caravella, F. P. Di Maio,A. Di Renzo; (2010), "Computational study of staged membrane reactor configurations for methane steam reforming. I. Optimization of stage lengths", AIChE Journal, 56, 248-258
 
[20] S. Hara, K. Haraya, G. Barbieri,E. Drioli; (2010), "Estimating limit conversion for methane steam reforming in a palladium membrane reactor using countercurrent sweep gas", Asia-Pacific Journal of Chemical Engineering, 5, 48-59
 
[21] M. Levent, D. J. Gunn,M. A. El-Bousiffi; (2003), "Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor", International Journal of Hydrogen Energy, 28, 945-959
 
[22] X. Zhai, S. Ding, Y. Cheng,Y. Jin; (2010) "CFD simulation with detailed chemistry of steam reforming of methane for hydrogen production in an integrated micro-reactor", International Journal of Hydrogen Energy, 35.11, 5383-5392.
 
[23] M. A. Rakib,K. I. Alhumaizi; (2005), "Modeling of a fluidized bed membrane reactor for the steam reforming of methane: Advantages of oxygen addition for favorable hydrogen production", Energy and Fuels, 19, 2129-2139
 
[24] A. Sarvar-Amini, R. Sotudeh-Gharebagh, H. Bashiri, N. Mostoufi,A. Haghtalab; (2007), "Sequential simulation of a fluidized bed membrane reactor for the steam methane reforming using ASPEN PLUS", Energy and Fuels, 21, 3593-3598
 
[25] A. M. Dehkordi,M. Memari; (2009), "Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor", International Journal of Hydrogen Energy, 34, 1275-1291
 
[26] J. P. Jakobsen, E. Halmøy; (2009), "Reactor modeling of sorption enhanced steam methane reforming", Energy Procedia 1.1, 725-732
 
[27] K. Johnsen, J. R. Grace, S. S. E. H. Elnashaie, L. Kolbeinsen,D. Eriksen; (2006), "Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor", Industrial and Engineering Chemistry Research, 45, 4133-4144
 
[28] W. Shuyan, Y. Lijie, L. Huilin, H. Yurong, J. Ding, L. Guodong,L. Xiang; (2008), "Simulation of effect of catalytic particle clustering on methane steam reforming in a circulating fluidized bed reformer", Chemical Engineering Journal, 139, 136-146
 
[29] P. Prasad,S. S. E. H. Elnashaie; (2003), "Coupled steam and oxidative reforming for hydrogen production in a novel membrane circulating fluidized-bed reformer", Industrial and Engineering Chemistry Research, 42, 4715-4722
 
[30] Z. Chen, P. Prasad, Y. Yan,S. Elnashaie; (2003), "Simulation for steam reforming of natural gas with oxygen input in a novel membrane reformer", Fuel Processing Technology, 83, 235-252
[31] Z. Chen, F. Po, J. R. Grace, C. Jim Lim, S. Elnashaie, A. Mahecha-Botero, M. Rakib, Y. Shirasaki,I. Yasuda; (2008), "Sorbent-enhanced/membrane-assisted steam - methane reforming", Chemical Engineering Science, 63, 170-182
[32] J. Xu,G. F. Froment; (1989), "Methane steam reforming, methanation and water-gas shift, I. Intrinsic kinetics", AIChE Journal, 35, 88-96
[33] S. A. Bhat,J. Sadhukhan; (2009), "Process intensification aspects for steam methane reforming: An overview", AIChE Journal, 55, 408-422