[1] Mcnab, B., et al. Processing of magnetite iron ores-comparing grinding options. in Proceedings of the AusIMM Iron Ore Conference. 2009.
[2] Rovenskikh, M. and A. Kobzeva, Analysis of iron ore reserves in Russia and worldwide. Tsifrovaya ekonomika. Problemy i perspektivy razvitiya, 2019: p. 318-323.
[3] Hicyilmaz, C., et al., Mineral Processing on the Verge of the 21st Century: Proceedings of the 8th International Mineral Processing Symposium, Antalya, Turkey, 16-18 October 2000. 2017: Routledge.
[4] Xiong, D., L. Lu, and R. Holmes, Developments in the physical separation of iron ore: magnetic separation, in Iron ore. 2015, Elsevier. p. 283-307. https://doi.org/10.1016/B978-1-78242-156-6.00009-5.
[5] Karmazin, V., M. Bikbov, and A. Bikbov, The energy saving technology of beneficiation of iron ore. Physical Separation in Science and Engineering, 2002. 11(4): p. 211-224. https://doi.org/10.1080/1055691021000062813.
[6] Wang, F., et al., Investigation of the magnetic separation performance of a low-intensity magnetic separator embedded with auxiliary permanent magnets. Minerals Engineering, 2022. 178: p. 107399. https://doi.org/10.1016/j.mineng.2022.107399.
[7] Wang, F., et al., Performance assessment of an innovative precise low-intensity magnetic separator. Minerals Engineering, 2022. 187: p. 107774. https://doi.org/10.1016/j.mineng.2022.107774.
[8] Karimi, P., Z. Mansourpour, and A. Khodadadi Darban, Simulation of magnetic separation process in wet low intensity magnetic separator using DPM-CFD Method. Journal of Advanced Environmental Research and Technology, 2023. 1(1): p. 59-73. http://dx.doi.org/10.22034/jaert.1.1.59.
[9] Schulz, N.F., Determination of the magnetic separation characteristics with the Davis Magnetic Tube. Trans. SME-AIME, 1964. 229: p. 211-216.
[10] Makhula, M., et al., Statistical analysis and concentration of iron ore using Longi LGS 500 WHIMS. International Journal of Mining Science and Technology, 2016. 26(5): p. 769-775.https://doi.org/10.1016/j.ijmst.2016.05.052.
[11] Ren, L., S. Zeng, and Y. Zhang, Magnetic field characteristics analysis of a single assembled magnetic medium using ANSYS software. International Journal of Mining Science and Technology, 2015. 25(3): p. 479-487. https://doi.org/10.1016/j.ijmst.2015.03.024.
[12] Li, W., et al., A preliminary investigation into separating performance and magnetic field characteristic analysis based on a novel matrix. Minerals, 2018. 8(3): p. 94. https://www.mdpi.com/2075-163X/8/3/94#.
[13] Dobbins, M., J. Domenico, and P. Dunn. A discussion of magnetic separation techniques for concentrating ilmenite and chromite ores. in The 6th international heavy minerals conference “back to basics”, The Southern African Institute of Mining and Metallurgy. 2007.
[14] Guarin, C., et al., The K Deeps magnetite mineralisation at Koolyanobbing, Western Australia. Applied Earth Science, 2010. 119(3): p. 143-153. https://doi.org/10.1179/1743275811Y.0000000009.
[15] Wills, B.A. and J. Finch, Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. 2015: Butterworth-heinemann. https://doi.org/10.2138/am.2008.502.
[16] Shahcheraghi, S.H., et al., A simple model for predicting optimal weight recovery of industrial iron ore processing–case study: Iranian iron ore mines. Canadian Metallurgical Quarterly, 2023. 62(2): p. 295-300. https://doi.org/10.1080/00084433.2022.2075074.
[17] Tahami, M., et al., Integration of experimental study and neural network modeling for estimating iron recovery in Davis tube tests. Scientific Reports, 2024. 14(1): p. 22578. https://doi.org/10.1038/s41598-024-72850-w.
[18] Paledi, U., et al., Selectivity index and separation efficiency prediction in industrial magnetic separation process using a hybrid neural genetic algorithm. SN Applied Sciences, 2021. 3(3): p. 351. https://doi.org/10.1007/s42452-021-04361-6.
[19] Izadi-Yazdan Abadi, M., R. Shokrizadeh, and F. Heydari, Development of a model for iron concentrate tonnage with least angle regressions–An industrial trial. Canadian Metallurgical Quarterly, 2024: p. 1-10. https://doi.org/10.1080/00084433.2024.2366715.
[20] Technical Operation Manual for Choghart Production Line, Volume 1 of 2. 1999.
[21] Lashkarbolooki, M., A.Z. Hezave, and S. Ayatollahi, Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria, 2012. 324: p. 102-107.
https://doi.org/10.1016/j.fluid.2012.03.015.
[22] Hemmati-Sarapardeh, A., et al., On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renewable and Sustainable Energy Reviews, 2018. 81: p. 313-329.
https://doi.org/10.1016/j.rser.2017.07.049.
[23] Hemmati‐Sarapardeh, A., et al., Accurate determination of the CO2‐crude oil minimum miscibility pressure of pure and impure CO2 streams: a robust modelling approach. The Canadian Journal of Chemical Engineering, 2016. 94(2): p. 253-261.https://doi.org/10.1002/cjce.22387.
[24] De Jesus, O. and M.T. Hagan, Backpropagation algorithms for a broad class of dynamic networks. IEEE Transactions on Neural Networks, 2007. 18(1): p. 14-27. https://doi.org/10.1109/TNN.2006.882371.
[25] Nami, F. and F. Deyhimi, Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network. The Journal of Chemical Thermodynamics, 2011. 43(1): p. 22-27. https://doi.org/10.1016/j.jct.2010.07.011.
[26] Hemmati-Sarapardeh, A., et al., Applications of artificial intelligence techniques in the petroleum industry. 2020: Gulf Professional Publishing. https://doi.org/10.1016/C2018-0-04421-7.