حذف کارآمد مس از محیط‌های آبی با استفاده از کربن فعال بهبود یافته با بیوسورفکتانت‌های رامنولیپیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی معدن، مجتمع آموزش عالی زرند، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 بخش مهندسی معدن، مجمتع آموزش عالی زرند، پژوهشکده صنایع معدنی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

هدف: یکی از چالشهای زیست‌محیطی صنایع مختلف، حذف فلزات سنگین از محیطهای آبی است. امروزه، استفاده از روش جذب سطحی به عنوان روشی کارآمد برای غلبه بر این چالش مورد توجه قرار دارد. اگر چه، مشخصات فیزیکی و شیمیایی جاذب از اهمیت ویژه‌ای برخوردار است.
مواد و روش: در این پژوهش، کارایی یک نمونه زغال فعال بهبود یافته با بیوسورفکتانت‌های رامنولیپیدی به منظور حذف یونهای مس از محیط آبی مورد ارزیابی قرار گرفته است. برای این منظور، تأثیر برخی پارامترهای عملیاتی شامل نسبت جاذب به فلز (50 تا 200)، pH محیط (4 تا 10) و دور همزن (100 تا 300 دور در دقیقه) بر راندمان حذف مس در قالب یک طرح آزمایشی مرکب مرکزی بررسی گردید. نتایج مطالعات آزمایشگاهی با استفاده از مدلسازی آماری و تحلیل آنالیز واریانس مورد ارزیابی قرار گرفتند.
 نتایج: تحلیل آماری نتایج نشان داد که تأثیر کلیه پارامترها بر کارایی جذب بارز بوده به نحوی که با افزایش نسبت جاذب به فلز و pH، و همچنین با کاهش دور همزن، راندمان افزایش یافت. در نتیجه بهینه‌سازی فرایند، راندمان حذف بیش از 99% با نسبت جاذب به فلز 200، pH محیط 7 و دور همزن 100 دور در دقیقه حاصل شد. مطالعات تکمیلی تحت شرایط بهینه نشان داد که فرایند از سینتیک شبه درجه دو و مدل جذب همدمای فروندلیچ پیروی می‌کند. همچنین، بررسی‌های ترمودینامیکی و جذب چندمرحله‌ای نشان داد که جذب مس بر جاذب اصلاح شده یک فرایند دومرحله‌ای شامل جذب اولیه شیمیایی با نرخ بالا و سپس، جذب ثانویه فیزیکی آهسته، احتمالاً ترسیب، می‌باشد. ارزیابی گزینش‌پذیری جذب نیز بیانگر تأثیر منفی سایر فلزات بر جذب مس می‌باشد.
نتیجه‌گیری: نتایج این پژوهش نشان داد که زغال فعال بهبود یافته با بیوسورفکتانت‌های رامنولیپیدی را می‌توان به عنوان جاذب بالقوه و کارآمد برای تصفیه پسابهای آلوده به فلزات سنگین مورد استفاده قرار داد.

کلیدواژه‌ها

موضوعات


[1] Jadaa W., Mohammed H.K. (2023) “Heavy metals–definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods–an overview study”. Journal of Ecological Engineering. 24. 249‒261. https://doi.org/10.12911/22998993/162955
 
[2] Sulistyowati L., Nurhasanah N., Riani E., Cordova M.R. (2023) “Heavy metals concentration in the sediment of the aquatic environment caused by the leachate discharge from a landfill”. Global Journal of Environmental Science and Management 9. 323‒336. https://doi.org/10.22034/gjesm.2023.02.11
 
[3] Elgarahy A.M., Elwakeel K.Z., Mohammad S.H., Elshoubaky G.A. (2021) “A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process”. Cleaner Engineering and Technology 4. 100209. https://doi.org/10.1016/j.clet.2021.100209
 
[4] Wang Y., Duan X., Wang L. (2020) “Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province”. Science of the Total Environment 710. 134953.https://doi.org/10.1016/j.scitotenv.2019.134953
 
[5] Jyothi N.R. (2020) “Heavy metal sources and their effects on human health”, in: M.K. Nazal, H. Zhao (Eds.), Heavy Metals-Their Environmental Impacts and Mitigation, IntechOpen., London, 21‒32 https://doi.org/10.5772/intechopen.95370
 
[6] Singh A., Sharma A., Verma R.K., Chopade R.L., Pandit P.P., Nagar V., Sankhla M.S. (2022) “Heavy metal contamination of water and their toxic effect on living organisms”. in: D.J. Dorta, D.P.D. Oliveira (Eds.), The toxicity of environmental pollutants, IntechOpen., Rijeka, 1‒19 https://doi.org/10.5772/intechopen.105075
 
[7] Anderson A., Anbarasu A., Pasupuleti R.R., Manigandan S., Praveenkumar T.R., Kumar J.A. (2022) “Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends”. Chemosphere 295. 133724. https://doi.org/ 10.1016/j.chemosphere.2022.133724
 
[8] Vidu R., Matei E., Predescu A.M., Alhalaili B., Pantilimon C., Tarcea C., Predescu C. (2020) “Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications”. Toxics. 8. 101. https://doi.org/10.3390/toxics8040101
 
[9] Shresth R., Ban S., Devkota S., Sharma S., Joshi R., Tiwari A.P., Joshi M.K. (2021) “Technological trends in heavy metals removal from industrial wastewater: A review”. Journal of Environmental Chemical Engineering 9. 105688. https://doi.org/10.1016/j.jece.2021.105688
 
[10] Zhu Y., Fan W., Zhou T., Li X. (2019) “Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms”. Science of the Total Environment 678. 253‒266. https://doi.org/10.1016/j.scitotenv.2019.04.416
 
[11] Jarkani S.A., Khoshdast H., Shariat E., Sam A. (2014) “Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers”. International Journal of Mining Science and Technology 24(1). 123‒127. https://doi.org/10.1016/j.ijmst.2013.12.021
 
[12] Asgari K., Huang Q., Khoshdast H., Hassanzadeh A. (2024) “A review on bioflotation of coal and minerals: classification, mechanisms, challenges, and future perspectives”. Mineral Processing and Extractive Metallurgy Review 45(1). 46‒76. https://doi.org/ 10.1080/08827508.2022.2121919
 
[13] Asgari K., Khoshdast H., Nakhaei F., Garmsiri M.R., Huang Q., Hassanzadeh A. (2023) “A review on floc-flotation of fine particles: Technological aspects, mechanisms, and future perspectives”. Mineral Processing and Extractive Metallurgy Review. https://doi.org/10.1080/08827508.2023.2236770. DOI: 10.1080/08827508.2023.2236770
 
[14] Khoshdast H. (2019) Practical Problems in Froth Flotation. Hormozgan University Press, Tehran, Iran.
 
[15] Xu M., McKay G. (2017) “Removal of heavy metals, lead, cadmium, and zinc, using adsorption processes by cost-effective adsorbents”. Adsorption Processes for Water Treatment and Purification. 109–138. https://doi.org/ 10.1007/978-3-319-58136-1_5
 
[16]   Msaadi R., Ammar S., Chehimi M.M., Yagci Y. (2017) “Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead (II) ions in aqueous media”. Eur. Polym. J. 89. 367–380. https://doi.org/10.1016/j.eurpolymj.2017.02.029
 
[17] El-Aswar E.I., Ibrahim S.S., Abdallah Y.R., Elsharkawy K. (2024) “Removal of ciprofloxacin and heavy metals from water by bentonite/activated carbon composite: Kinetic, isotherm, thermodynamic and breakthrough curve modeling studies”. Journal of Molecular Liquids 403.124821. https://doi.org/10.1016/j.molliq.2024.124821
 
[18] Mohammad-Gholikhan-Khalaj P., Hasanzadeh M., Panahi D., Yazdankhah Z., Dehghan S.F. (2023) “Feasibility study on the removal of toluene from the air stream by activated carbon/zeolite imidazolate framework composite material”. Journal of Environmental Chemical Engineering 11(5).110885. https://doi.org/10.1016/j.jece.2023.110885
 
[19] Erdogan F.O., Celik C., Turkmen A.C., Sadak A.E., Cücü E. (2023) “Hydrogen storage behavior of zeolite/graphene, zeolite/multiwalled carbon nanotube and zeolite/green plum stones-based activated carbon composites”. Journal of Energy Storage 72(C). https://doi.org/108471. 10.1016/j.est.2023.108471
 
[20] Ullah N., Ali Z., Khan A.S., Adalat B., Nasrullah A., Khan A.B. (2024) “Preparation and dye adsorption properties of activated carbon/clay/sodium alginate composite hydrogel membranes”. RSC Advances 14(1). 211–221. https://doi.org/10.1039/D3RA07554K
 
[21] Kim W.K., Verma S., Ahmadi Y., Cho M.S., Kim K.H. (2024) “The effects of metal-oxide content in MnO2-activated carbon composites on reactive adsorption and catalytic oxidation of formaldehyde and toluene in air”. Science of The Total Environment 926. 172137. https://doi.org/10.1016/j.scitotenv.2024.172137
 
[22] Hemalatha J., Senthil M., Madhan D., Al-Mohaimeed A.M., Al-Onazi W.A. (2024) “Fabrication of NiFe2O4 nanoparticles loaded on activated carbon as novel composites for high efficient ultra violet-light photocatalysis for degradation of aqueous organic pollutants”. Diamond and Related Materials 144. 110995. DOI: 10.1016/j.diamond.2024.110995
 
[23] Jiang R., Zhou C., Yang Y., Zhu S., Li S., Zhou J., Li W., Ding L. (2023) “Rice straw-derived activated carbon/nickel cobalt sulfide composite for high performance asymmetric supercapacitor”. Diamond and Related Materials 139. 110322. https://doi.org/10.1016/j.diamond.2023.110322
 
[24] Franklin J.B., Priyadharshini V., Sundaram S.J., Pandi S.M., Raj A.D. (2024) “Intrinsic pseudocapacitive enhancement of NiCo2O4/activated carbon composites for high-performance supercapacitors”. Inorganic Chemistry Communications 163. 112402. https://doi.org/10.1016/j.inoche.2024.112402
 
[25] Alemany-Molina G., Navlani-García M., Juan-Juan J., Morallón E., Cazorla-Amorós D. (2024) “Exploring the synergistic effect of palladium nanoparticles and highly dispersed transition metals on carbon nitride/super-activated carbon composites for boosting electrocatalytic activity”. Journal of Colloid and Interface Science 660. 401–411. https://doi.org/10.1016/j.jcis.2024.01.057
 
[26] Pei S., Hu Y., Huang Y., Liu Y., Zhou H. (2024) “Ultrasonically assisted synthesis of g-C3N4-activated carbon composite for enhanced defluoridation of water”. Alexandria Engineering Journal 86. 399–404. https://doi.org/10.1016/j.aej.2023.11.084
 
[27] Oyim J., Jokazi M., Mack J., Amuhaya E., Nyokong T. (2024) “Indium porphyrin - colloidal activated carbon composites for photocatalytic activity against an organic pollutant and bacteria”. Polyhedron 253. 116918. https://doi.org/10.1016/j.poly.2024.116918
 
[28] Izaguirre N., Alberro M., Erdocia X., Labidi J. (2024) “Kraft and organosolv lignin-activated carbon composites for supercapacitor electrode materials”. Journal of Energy Storage 80. 110386. https://doi.org/10.1016/j.est.2023.110386
 
[29] Luo K., Hu T., Xing W., Zeng G., Tang W. (2024) “Polyaniline/activated carbon composite based flowing electrodes for highly efficient water desalination with single-cycle operational mode”. Chemical Engineering Journal 481. 148454. https://doi.org/10.1016/j.cej.2023.148454
 
[30] Yan Y., Chen T., Tan R., Han S., Zhang X., Shen Y., Hu X., Zhao S., Qu D., Chen L., Wu N., Wu G. (2024) “In situ production of bacterial nanocellulose-activated carbon composites from pear juice industry wastewater by two new Komagataeibacter intermedius and Komagataeibacter xylinus isolates for heavy metal removal”. Environmental Technology & Innovation 33. 103497. https://doi.org/10.1016/j.eti.2023.103497
 
[31] Karbassiyazdi E., Altaee A., Razmjou A., Samal A.K., Khabbaz H. (2023) “Gravity-driven composite cellulose acetate/activated carbon aluminium-based hydrogel membrane for landfill wastewater treatment”. Chemical Engineering Research and Design 200. 682–692. https://doi.org/10.1016/j.cherd.2023.11.008
 
[32] Dago-Serry Y., Maroulas K.N., Tolkou A.K., AbdelAll N., Alodhayb A.N., Khouqeer G.A., Kyzas G.Z. (2024) “Composite super-adsorbents of chitosan/activated carbon for the removal of nonsteroidal anti-inflammatory drug from wastewaters”. Journal of Molecular Structure 1298(2). 137044. https://doi.org/10.1016/j.molstruc.2023.137044
 
[33] Zhao M., Song C., Zhang F., Jia X., Ma D. (2023) “New-style electrokinetic-adsorption remediation of cadmium-contaminated soil using double-group electrodes coupled with chitosan-activated carbon composite membranes”. Science of The Total Environment 904. 166919. https://doi.org/ 10.1016/j.scitotenv.2023.166919
 
[34] Kong Q., Zhang X., Ma K., Gong Y., Peng H., Qi W. (2023) “PEI-modified chitosan/activated carbon composites for Cu(II) removal from simulated pyrophosphate plating rinsing wastewater”. International Journal of Biological Macromolecules 251. 126429. https://doi.org/10.1016/j.ijbiomac.2023.126429
 
[35] Khoshdast H., Shojaei V. (2012) “Ash removal from a sample coal by flotation using rhamnolipid biosurfactants”. Journal of Mining World Express 1(2). 39–45.
 
[36] Shami R.B., Shojaei V., Khoshdast H. (2021) “Removal of some cationic contaminants from aqueous solutions using sodium dodecyl sulfate-modified coal tailings”. Iranian Journal of Chemistry and Chemical Engineering 40(4). 1105–1120. https://doi.org/10.30492/ijcce.2020.111834.3682
 
[37] Boveiri R., Shojaei V., Khoshdast H. (2019) “Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant”. Journal of Environmental Management 231. 1182–1192. https://doi.org/10.1016/j.jenvman.2018.03.126
 
[38] Shojaei V., Khoshdast H. (2018) “Efficient chromium removal from aqueous solutions by precipitate flotation using rhamnolipid biosurfactants”. Physicochemical Problems of Mineral Processing 54(3). 1014–25.: https://doi.org/10.5277/ppmp18103
 
[39] Gholami A.R., Asgari K., Khoshdast H., Hassanzadeh A. (2022) “A hybrid geometallurgical study using coupled Historical Data (HD) and Deep Learning (DL) techniques on a copper ore mine”. Physicochemical Problems of Mineral Processing 58(3). 147841. DOI: https://doi.org/10.37190/ppmp/147841
 
[40] Khoshdast H., Shojaei V., Khoshdast H. (2017) “Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier”. International Journal of Mining and Geo-Engineering 51(1). 9–24. https://doi.org/10.22059/ijmge.2016.218483.594634
 
[41] Khoshdast H., Soflaeian A., Shojaei V. (2019) “Coupled fuzzy logic and experimental design application for simulation of a coal classifier in an industrial environment”. Physicochemical Problems of Mineral Processing 55(2). 504–515. https://doi.org/10.5277/ppmp18161
 
[42] Hasanizadeh I., Khoshdast H., Asgari K., Huang Q., Rahmanian A. (2023) “Studying the influence of cationized pyrolysis oil on the flotation of a bituminous coal using historical data design”. International Journal of Coal Preparation and Utilization. Doi: https://doi.org/10.1080/19392699.2023.2254708
 
[43] Hasanizadeh I., Khoshdast H., Shojaei V., Yang X., Asgari K. (2023) “Flotation response of a bituminous coal sample in presence of a pyrolitic oil recycled from used car tires”. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45(1). 1918–1936. https://doi.org/10.1080/15567036.2023.2179696
 
[44] Gholami A.R., Khoshdast H., Hassanzadeh A. (2021) “Applying hybrid neural networks/genetic and artificial bee colony algorithms to simulate the bio-treatment of dye-polluted wastewater using ‎rhamnolipid biosurfactants”. Journal of Environmental Management 299. 113666. https://doi.org/10.1016/j.jenvman.2021.113666
 
[45] Khoshdast H., Gholami A.R., Hassanzadeh A., Niedoba T., Surowiak A. (2021) “Advanced simulation of removing chromium from a synthetic wastewater by rhamnolipidic bioflotation using hybrid neural networks with metaheuristic algorithms”. Materials 14. 2880. https://doi.org/10.3390/ma14112880
 
[46] Mirshrkari S., Shojaei V., Khoshdast H. (2022) “Adsorptive study of cadmium removal from aqueous solution using a coal waste loaded with Fe3O4 nanoparticles”. Journal of Mining and Environment 13(2). 527–545. https://doi.org/10.22044/jme.2022.11796.2174
 
[47] Mahmoodabadi M., Khoshdast H., Shojaei V. (2019) “Efficient dye removal from aqueous solutions using rhamnolipid biosurfactants by foam flotation”. Iranian Journal of Chemistry and Chemical Engineering 38(4). 127–140. 10.30492/ijcce.2019.37644
 
[48] Butrin N., Rueangchai N., Noisong P., Sansuk S. (2024) “Synthesis of hydroxyapatite/activated carbon composite with bioactivity property and copper ion removal efficiency”. Materialstoday Communications 40. 109615. https://doi.org/10.1016/j.mtcomm.2024.109615
 
[49] Neisan R.S., Saady N.M.C., Bazan C., Zendehboudi S., Albayati T.M. (2023) “Adsorption of copper from water using TiO2-modified activated carbon derived from orange peels and date seeds: Response surface methodology optimization”. Heliyon 9(11). e21420. https://doi.org/10.1016/j.heliyon.2023.e21420
 
[50] Djezzar Z., Aidi A., Rehali H., Ziad S., Othmane T. (2024) “Characterization of activated carbon produced from the green algae Spirogyra used as a cost-effective adsorbent for enhanced removal of copper(ii): application in industrial wastewater treatment”. RSC Advances 14(8). 5276‒5289. https://doi.org/10.1039/D3RA08678J
 
[51] Fita G., Djakba R., Mouhamadou S., Duc M., Rao S., Popoola L.T., Harouna M., Benoit L.B. (2023) “Adsorptive efficiency of hull-based activated carbon toward copper ions (Cu2+) removal from aqueous solution: Kinetics, modelling and statistical analysis”. Diamond and Related Materials 139. 110421. https://doi.org/10.1016/j.diamond.2023.110421
 
[52] Xie F., Chen J.N., Zhang X.Z., Xu B., Wang W. (2023) “Adsorption mechanism of copper and gold thiosulfates onto activated carbon”. Transactions of Nonferrous Metals Society of China 33(10). 3210‒3221. https://doi.org/10.1016/S1003-6326(23)66328-9
 
[53] El Malti W., Hijazi A., Abou Khalil Z., Yaghi Z., Medlej M.K., Reda M. (2022) “Comparative study of the elimination of copper, cadmium, and methylene blue from water by adsorption on the citrus Sinensis peel and its activated carbon”. RSC Advances 12(17). 10186‒10197. https://doi.org/10.1039/D1RA08997H
 
[54] Darweesh M.A., Elgendy M.Y., Ayad M.I., Ahmed A.M., Elsayed N.M.K., Hammad W.A. (2022) “Adsorption isotherm, kinetic, and optimization studies for copper (II) removal from aqueous solutions by banana leaves and derived activated carbon”. South African Journal of Chemical Engineering 40. 10‒20. https://doi.org/10.1016/j.sajce.2022.01.002
 
[55] Habashi F. (1999) Textbook of Hydrometallurgy. 2nd Edition, Metallurgie Extractive Quebec, Canada. https://doi.org/ 10.1016/S0892-6875(00)00127-8
 
[56] Zarandi M.P., Khoshdast H., Darezereshki E., Shojaei V. (2020) “Efficient cadmium removal from aqueous environments using a composite produced by coal fly ash and rhamnolipid biosurfactants”. Journal of Mineral Resources Engineering 5(3). 28–30. https://doi.org/10.30479/jmre.2020.11434.1309
 
[57] Eldeeb T.M., El-Nemr A., Khedr M.H., El-Dek S.I. (2021) “Novel bio-nanocomposite for efficient copper removal”. Egyptian Journal of Aquatic Research 47(3). 261–267. https://doi.org/10.1016/j.ejar.2021.07.002
 
[58] Mirshekari S., Shojaei V., Fozooni S., Khoshdast H. (2023) “Efficient cadmium removal from synthetic wastewater using a bipolymeric/Fe3O4 nanocomposite loaded on coal tailings”. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 45(1). 280–298. https://doi.org/10.1080/15567036.2023.2165739
 
[59] Nguyen K.T., Ahmed M.B., Mojiri A., Huang Y., Zhou A.L., Li D. (2021) “Advances in As contamination and adsorption in soil for effective management”. Journal of Environmental Management 296. 113274. https://doi.org/10.1016/j.jenvman.2021.113274
 
[60] Berazesh B., Mousavi S.M., Zarei M., Ghaedi M., Bahrani S., Hashemi S.A. (2021) “Biosorption”. Interface Science and Technology 33. 587‒628. https://doi.org/10.1016/B978-0-12-818805-7.00003-5
 
[61] Pooresmaeil M., Namazi H. (2020) “Application of polysaccharide-based hydrogels for water treatments”. Hydrogels Based on Natural Polymers 411‒455. https://doi.org/10.1016/B978-0-12-816421-1.00014-8
 
[62] Liu B., Luo H., Rong H., Zeng X., Wu K., Chen Z., Lu H., Xu D. (2019) “Temperature-induced adsorption and desorption of phosphate on poly(acrylic acid-co-N-[3-(dimethylamino) propyl] acrylamide) hydrogels in aqueous solutions”. Desalination and Water Treatment 160. 260‒267. https://doi.org/10.5004/dwt.2019.24351
 
[63] Li L., Stanforth R. (2000) “Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH)”. Journal of Colloid and Interface Science 230. 12–21. https://doi.org/doi: 10.1006/jcis.2000.7072.
 
[64] Aydoğan S., Aras A., Uçar G., Erdemoğlu M. (2007) “Dissolution kinetics of galena in acetic acid solutions with hydrogen peroxide”. Hydrometallurgy 89. 189–195. https://doi.org/10.1016/j.hydromet.2007.07.004
 
[65] Marin O., Ordoñez J.I., Galvez E.D., Cisternas L.A. (2020) “Pourbaix diagrams for copper ores processing with seawater”. Physicochemical Problems of Mineral Processing 56(4). 625–640. https://doi.org/10.37190/ppmp/123407
 
[66] Ford R.G., Wilkin R.T., Puls R.W. (2007) Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Technical Report, U.S. Environmental Protection Agency.