[1]. Megaw, P.K., J. Ruiz, and S.R. Titley, High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico. Economic Geology, 1988. 83(8): p. 1856-1885. https://doi.org/10.2113/gsecongeo.83.8.1856.
[2]. Morris, H.T. and D.P. Cox, Descriptive model of polymetallic replacement deposits. Mineral deposit models: US Geological Survey Bulletin, 1986. 1693: p. 99-100.
[3]. Rendu, J.-M., An introduction to cut-off grade estimation. 2014: Society for Mining, Metallurgy, and Exploration.
[4]. Deschenes, G., Advances in the cyanidation of gold. Developments in Mineral Processing, 2005. 15: p. 479-500. https://doi.org/10.1016/S0167-4528(05)15020-0.
[5]. Estay, H., Carvajal, P., Gonzalez, K., Yanez, H., Bustos, W., Castro, S. and Arriagada, F. 2013 Cyanide leaching of copper-gold-silver ores. 5 th International Seminar on Process Hydrometallurgy, Santiago, Chile, July 10-12, 2013, 153-160.
[6]. Saba, M., et al., Diagnostic pre-treatment procedure for simultaneous cyanide leaching of gold and silver from a refractory gold/silver ore. Minerals Engineering, 2011. 24(15): p. 1703-1709. https://doi.org/10.1016/j.mineng.2011.09.013.
[7]. Yazıcı, E., Ahlatci, F., Yilmaz, E., Celep, O., Deveci, H. Pre-treatment of a copper-rich gold ore for elimination of copper interference. in 8th European Metallurgical Conference (EMC), Dusseldorf. 2015. https://doi.org/10.13140/RG.2.1.4186.7362.
[8].Pereira, A.C. and V.d.S.B. Barbosa, Effectiveness acidic pre-cleaning for copper-gold ore. REM-International Engineering Journal, 2017. 70: p. 445-450. https://doi.org/10.1590/0370-44672016700126.
[9]. Zhang Q, Feng Q, Wen S, Cui C, Liu J. A Novel Technology for Separating Copper, Lead and Zinc in Flotation Concentrate by Oxidizing Roasting and Leaching. Processes. 2019; 7(6):376. https://doi.org/10.3390/pr7060376.
[10]. Schueler, T.A., de Aguiar, P.F., Vera, Y.M. et al. Leaching of Cu, Zn, and Pb from Sulfidic Tailings Under the Use of Sulfuric Acid and Chloride Solutions. J. Sustain. Metall. 7, 1523–1536 (2021). https://doi.org/10.1007/s40831-021-00446-z.
[11]. Fatemeh Golaghaei, A.M., Seyed Ahmad Ataei, Mohamad Ali Karimi, Masoumeh Torabi, A multistage process for copper and gold leaching from the residue of dust unit in sarcheshmeh copper complex using thiourea method. Journal of Separation Science and Engineering, 2021. Vol. 13, No. 1: p. 71-84. https://doi.org/10.22103/JSSE.2021.2928.
[121]. Das, S. and Y.P. Ting, Improving gold (bio) leaching efficiency through pretreatment using hydrogen peroxide assisted sulfuric acid. CLEAN–Soil, Air, Water, 2017. 45(6): p. 1500945.
[13]. Behnamfard, A., M.M. Salarirad, and F. Veglio, Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste management, 2013. 33(11): p. 2354-2363. https://doi.org/10.1002/clen.201500945.
[14]. Sparrow, G.J. and J.T. Woodcock, Cyanide and other lixiviant leaching systems for gold with some practical applications. Mineral Processing and Extractive Metullargy Review, 1995. 14(3-4): p. 193-247. https://doi.org/10.1080/08827509508914125.
[15]. Zhang, Z.Y., Wu, L., He, K. and Zhang, F.S., A sequential leaching procedure for efficient recovery of gold and silver from waste mobile phone printed circuit boards. Waste Management, 2022. 153: p. 13-19. https://doi.org/10.1016/j.wasman.2022.08.011.
[16]. Pathak, P., Singh, V.K. & Chabhadiya, K. Sequential Leaching of Strategic Metals from Exhausted LNCM-Cathode Batteries Using Oxalic and Sulfuric Acid Lixiviants. JOM 73, 1386–1394 (2021). https://doi.org/10.1007/s11837-021-04631-z