افزایش بازیابی سرب و نقره در فلوتاسیون کانسنگ اکسیده سرب و روی انگوران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه فرآوری مواد معدنی، دانشکده مهندسی معدن ، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

فلوتاسیون کانسنگ‌های اکسیده و سولفوره سرب و روی در ایران سابقه طولانی دارد. استفاده از تیول‌ها نظیر پتاسیم امیل گزنتات در فلوتاسیون سرب بسیار مرسوم است. با این حال هنوز هم افزایش بازیابی سرب و نقره در صنعت فعلی با چالش‌هایی روبرو است. در این پژوهش سعی بر این است که اثر هم‌افزایی برخی کلکتورها با پتاسیم امیل گزنتات در راستای ارتقای بازیابی سرب و نقره مورد بررسی قرار گیرد. ابتدا به میزان 50 کیلوگرم از کانسنگ متوسط عیار سرب و روی اکسیده معدن انگوران نمونه‌برداری صورت گرفت. پس از خردایش و رساندن نمونه به d80 مناسب، خواص‌سنجی نمونه به کمک مطالعات میکروسکوپ نوری و الکترونی، XRD، XRF، جذب اتمی و نیز تعیین درجه آزادی صورت گرفت. طراحی آزمایش به روش کلاسیک برای بررسی تاثیر پارامترها بر عیار و بازیابی سرب و نقره نظیر دانه‌بندی، درصد جامد، دورهمزنی، زمان آماده‌سازی، میزان سولفید سدیم و مهم‌تر از همه نوع کلکتور ترکیبی و میزان مصرف آن‌ها صورت پذیرفت. نتایج حاصل نشان می‌دهد که بهترین شرایط فلوتاسیون به منظور دستیابی به بالاترین میزان بازیابی سرب و نقره در d80 برابر با 90µ، درصد جامد 25، دور همزنی 1000 دور بر دقیقه، 10 دقیقه زمان آماده‌سازی سولفید سدیم، 6200 گرم بر تن سولفید سدیم و 600 گرم برتن پتاسیم امیل گزنتات به همراه 100 گرم بر تن سدیم دی اتیل دی تیو کاربامات رخ می‌دهد. دلیل انتخاب این ترکیب از کلکتور‌ها افزایش بازیابی سرب یعنی تولید کنسانتره سرب در وزن بیشتر با عیار نقره بالاتر و سوددهی بیشتر در فروش محصول است. ترکیب کلکتورهای گزنتات و کاربامات می‌تواند 7/8 درصد بازیابی سرب و 273 گرم بر تن عیار نقره را بهبود بخشد.

کلیدواژه‌ها

موضوعات


[1]           A. Marabini and C. Cozza, "A new technique for determining mineral—Reagent chemical interaction products by transmission IR spectroscopy: Cerussite—Xanthate system," Colloids and surfaces, vol. 33, pp. 35-41, 1988.
 
[2]           S. M. Bulatovic, Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores. Elsevier, 2007.
 
[3]           Y.-f. Cui, F. Jiao, W.-q. Qin, L.-y. Dong, and X. Wang, "Synergistic depression mechanism of zinc sulfate and sodium dimethyl dithiocarbamate on sphalerite in Pb−Zn flotation system," Transactions of Nonferrous Metals Society of China, vol. 30, no. 9, pp. 2547-2555, 2020/09/01/ 2020, doi: https://doi.org/10.1016/S1003-6326(20)65400-0.
 
[4]           J. Liu, J. Hao, W. Dong, and Y. Zeng, "Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu-Zn sulfide," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 615, p. 126290, 2021/04/20/ 2021, doi: https://doi.org/10.1016/j.colsurfa.2021.126290.
 
[5]           F. Jiao, Y. Cui, D. Wang, and W. Qin, "Effect of sodium salt of N, N-dimethyldi-thiocarbamate on the flotation separation of marmatite from galena," Physicochemical Problems of Mineral Processing, vol. 55, no. 2, pp. 389-399, 2019.
 
[6]           S. Liu, Y. Dong, L. Xie, G. Liu, H. Zhong, and H. Zeng, "Uncovering the hydrophobic mechanism of a novel dithiocarbamate-hydroxamate surfactant towards galena," Chemical Engineering Science, vol. 245, p. 116765, 2021/12/14/ 2021, doi: https://doi.org/10.1016/j.ces.2021.116765.
 
[7]           B. Mirshekari, M. Lotfian, H. Manzaeitavakkol, A. Sufiabadi, and M. Nejadaria, "Feasibility of increasing silver recovery in lead concentrate of Khan Khatun mine by flotation method  [In Persian]," presented at the The 10th Iran Mining Engineering Conference, University of Sistan and Baluchestan, 2020. [Online]. Available: https://civilica.com/doc/1535999.
 
[8]           J. Liu, S. M. Wen, and D. D. Wu, "Recovery of Silver from Zinc Leach Residue by Flotation," Advanced Materials Research, vol. 524-527, pp. 1041-1046, 2012, doi: 10.4028/www.scientific.net/AMR.524-527.1041.
 
[9]           C. Wang, F. Ye, X. Tong, and B. Song, "Comprehensive recovery of associated silver from some silver-rich lead-zinc sulfide ore in Yunnan," Mining and Metallurgical Engineering, vol. 33, no. 4, pp. 67-69, 2013.
 
[10]         B. Drif, Y. Taha, R. Hakkou, and M. Benzaazoua, "Recovery of residual silver-bearing minerals from low-grade tailings by froth flotation: the case of Zgounder mine, Morocco," Minerals, vol. 8, no. 7, p. 273, 2018.
[11]         X.-P. Luo, H.-P. Zhou, Y. Zhou, M.-F. Lei, and J. Zhang, "New technique to improve dressing indexes of associated silver in complex lead-zinc ore," Mining and Metallurgical Engineering, vol. 31, no. 3, pp. 35-39, 2011.
 
[12]         B. Song, X. Dong, X. Qiu, Z. Hu, and Y. Wang, "Electronic structure and flotation behavior of Ag-bearing galena," Journal of Alloys and Compounds, vol. 868, p. 159105, 2021.
 
[13]         T. Y. W. Chang, P. Shen, R. Liu, D. Liu, "Study on Technological Mineralogy and Flotation Recovery Technology of a Lead zinc sulfide ore in Yunnan (in Chinese)" Nonferr. Met. Eng., vol. 12, no. 11, pp. 94-101, 2022.
[14]         J.-c. Ran, X.-y. Qiu, Z. Hu, Q.-j. Liu, B.-x. Song, and Y.-q. Yao, "Effects of particle size on flotation performance in the separation of copper, gold and lead," Powder Technology, vol. 344, pp. 654-664, 2019/02/15/ 2019, doi: https://doi.org/10.1016/j.powtec.2018.12.045.
 
[15]         Y. Lu, X. Tong, X. Xie, Y. Bo, and Z. Hua, "Effect of particle size on the oxidation and flotation behavior of galena particles," Physicochemical Problems of Mineral Processing, journal article vol. 55, no. 1, pp. 208-216, 2019, doi: 10.5277/ppmp18122.
 
[16]         F. Dehghani, "Investigating impact of pulp density on flotation performance," ed, 2022.
 
[17]         D. Deglon, "The effect of agitation on the flotation of platinum ores," Minerals Engineering, vol. 18, no. 8, pp. 839-844, 2005.
 
[18]         S. Grano, "Effect of impeller rotational speed on the size dependent flotation rate of galena in full scale plant cells," Minerals Engineering, vol. 19, no. 13, pp. 1307-1318, 2006/11/01/ 2006, doi: https://doi.org/10.1016/j.mineng.2005.11.008.
 
[19]         M. Mahdaviamin, "Evaluation of the role of particle size in the performance of lead and zinc flotation in Bama-Irankoh complex [Thesis In Persian]]," Msc, Vali-e-Asr University of Rafsanjan, 2017.
 
[20]         T. B. Shourabi, "Determining the optimal operational conditions for the flotation of sulfide-oxide mixed lead and zinc ore in Koh Sarmeh mine," Master of science, Mining Engineering Yazd University, Yazd University, 2017.
 
[21]         A. Atrafi, H. Hodjatoleslami, M. Noaparast, Z. Shafaei, and A. Ghorbani, "Implementation of flotation and gravity separation, to process Changarzeh sulfide-oxide lead ore," Journal of Mining and Environment, vol. 3, no. 2, pp. 79-87, 2012.
 
[22]         M. Asadi, F. Soltani, M. R. Tavakoli Mohammadi, A. Khodadadi, and M. Abdollahy, "A successful operational initiative in copper oxide flotation: Sequential sulphidisation-flotation technique," Physicochemical Problems of Mineral Processing, journal article vol. 55, no. 2, pp. 356-369, 2019, doi: 10.5277/ppmp18137.
 
[23]         R. Herrera-Urbina, F. J. Sotillo, and D. W. Fuerstenau, "Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena," International Journal of Mineral Processing, vol. 55, no. 3, pp. 157-170, 1999/01/01/ 1999, doi: https://doi.org/10.1016/S0301-7516(98)00029-5.
 
[24]         H. Hamidinejad, "Upgrading sulphide-oxide mixed ore from Angoran mine by flotation method  [Thesis In Persian]," Mining Engineering, Imam Khomeini International University, Imam Khomeini International University, 2014.
 
[25]         M. Asgari Mehrabadi and M. Karamoozian, "Investigation of the Effective Parameters on Lead Carbonate Mineral Flotation in Laboratory Scale," Journal of Mineral Resources Engineering, vol. 4, no. 3, pp. 87-103, 2019, doi: 10.30479/jmre.2019.9578.1195.
 
[26]         A. D. a. F. Rashchi, "ESTIMATION OF REAGENT CONSUMPTION IN LEAD FLOTATION OF A ZINC LEACH RESIDUE," Canadian Metallurgical Quarterly, vol. 44, pp. 483-488, 2005, doi: doi: 10.1179/cmq.2005.44.4.483.
 
[27]         B. Rezai, Flotation   [Book In Persian]. Hormozghan University: Hormozghan University, 1996.
 
[28]         S. I. Wark and A. B. Cox, Principles of flotation: an experimental study of the effect of xanthates on contact angles at mineral surfaces. American Institute of Mining & Metallurgical Engineers, 1932.
 
[29]         B. McFadzean, D. G. Castelyn, and C. T. O’Connor, "The effect of mixed thiol collectors on the flotation of galena," Minerals Engineering, vol. 36-38, pp. 211-218, 2012/10/01/ 2012, doi: https://doi.org/10.1016/j.mineng.2012.03.027.
 
[30]         D. Nagaraj and S. Ravishankar, "Flotation reagents—A critical overview from an industry perspective," Froth flotation: A century of innovation, pp. 375-424, 2007.
 
[31]         D. G. Kesterke, "Contact angle studies comparing xanthates and dithiocarbamates as collectors for sulfide minerals," University of Nevada, Reno, 1959.
 
[32]         A. Hajati and F. Soltani, "Concentrating challenges of the Zarigan complex Pb-Zn-Fe non-sulfide ore: Défis de concentration du minerai complexe non sulfuré Pb-Zn-Fe de Zarigan," Canadian Metallurgical Quarterly, vol. 62, no. 2, pp. 301-310, 2023.
 
[33]         Y. Zhang and J. Chen, "Sulfidizing behavior of complex lead-silver Ore: A flotation study," Minerals, vol. 11, no. 4, p. 434, 2021.
 
[34]         G. Önal, G. Bulut, A. Gül, O. Kangal, K. Perek, and F. Arslan, "Flotation of Aladag oxide lead–zinc ores," Minerals engineering, vol. 18, no. 2, pp. 279-282, 2005.
 
[35]         J. Zhao et al., "Characterization of discarded lead–zinc sulfide ore tailings based on mineral fragments," Minerals, vol. 12, no. 10, p. 1279, 2022.
 
[36]         N. Acarkan et al., "The effect of collector's type on gold and silver flotation in a complex ore," Separation Science and Technology, vol. 46, no. 2, pp. 283-289, 2010.
 
[37]         A. Dehghani and M. Shahbazi, "Depression of pyrite and sphalerite in the rougher flotation of galena from Gushfeel lead and zinc ore," Journal of Mining Engineering, vol. 12, no. 35, pp. 35-51, 2017.