بررسی اثر میدان مغناطیسی بر جذب CO2 توسط نانوسیالات مختلف در یک برج جذب حبابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی اصفهان

2 دانشجوی کارشناسی ارشد مهندسی شیمی دانشگاه اصفهان

3 دانشکده مهندسی شیمی، دانشگاه صنعتی اصفهان، اصفهان، ایران

4 عضو هیات علمی دانشگاه اصفهان گروه مهندسی شیمی

چکیده

اثر میدان مغناطیسی بر جذب دیوکسید کربن توسط آب دیونیزه و نانوسیالات آب/اکسید آهن و آب/اکسید آلومینیوم در یک ستون حبابی مورد مطالعه قرار گرفت. علاوه بر شدت میدان مغناطیسی، اثر پارامترهای کلیدی مثل دبی جریان گاز، نوع نانوذره، جهت میدان و غلظت نانوسیال بر مقادیر ضریب و شار انتقال جرم بررسی شد. نتایج نشان داد با توجه به قطبی بودن ملکولهای آب، با افزایش شدت میدان مغناطیسی تا 1133 گوس، ضریب انتقال جرم در آب خالص به میزان 7/6 % افزایش میابد. این افزایش در صورتی حاصل می گردد که جهت میدان همراستا با جهت حرکت فاز پیوسته باشد. در صورت اضافه نمودن نانوذرات به آب خالص، ضریب و شار انتقال جرم افزایش میابد. با افزایش غلظت نانوسیال آب/ اکسید آهن ضریب انتقال جرم نیز افزایش یافت، ولی در مورد نانوسیال آب/اکسید آلومینیوم با افزایش غلظت نانوسیال تا 005/0 درصد حجمی، ضریب انتقال جرم نسبت به آب خالص افزایش پیدا کرد، اما با افزایش غلظت، ضریب انتقال جرم کاهش یافت.

کلیدواژه‌ها

موضوعات


[1] B. Mandal and S. Bandyopadhyay (2005) “Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine” Chemical Engineering Science, 60(22), 6438-6451.
 ##
[2] B.Metz (2005) Carbon dioxide capture and storage: special report of the intergovernmental panel on climate change. Cambridge University Press.
 ##
[3] H. Yang et al. (2008) “Progress in carbon dioxide separation and capture: A review” Journal of environmental sciences 20(1), 14-27.
 ##
[4] J. Adewole et al. (2013) “Current challenges in membrane separation of CO2 from natural gas: A review” International Journal of Greenhouse Gas Control, 17, 46-65.
##
[5] R. E. Treybal, (1980) Mass transfer operations, 3rd Ed., McGraw Hill, New York.
 ##
[6] T. Sema et al. (2013) “Mass transfer of CO2 absorption in hybrid MEA-methanol solvents in packed column” Energy Procedia, 37, 883-889.
 ##
[7] A. Dey and A. Aroonwilas (2009) “CO2 absorption into MEA-AMP blend: mass transfer and absorber height index” Energy Procedia, 1(1), 211-215
 ##
[8] Y. T. Kang, J. Kim, J. K. Kim, C. K. Choi (2003) “Comparisons of mechanical, chemical and nano technologies for absorption applications” Proceedings of the International Seminar on Thermally Powered Sorption Technology, Fukuoka, Japan.
## 
[9] Y. T. Kang, A. Akisawa, T. Kashiwagi (2000) “Analytical investigation of two different absorption modes: falling film and bubble types”, International Journal of Refrigeration, 23 (6), 430-443.
 ##
[10] T. Kashiwagi (1988) “Basic mechanism of absorption heat and mass transfer enhancement by the Marangoni effect”, Newsletter IEA Heat Pump Center, 6(4) 2-6.
 ##
[11] H. Daiguji, E. Hihara, T. Saito, (1977) “Mechanism of absorption enhancement by surfactant” International Journal of Heat and Mass Transfer,  40, 1743–1752
 ##
[12] J. K. Kim, J. Y. Jung, Y. T. Kang (2007) “Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids”, International Journal of Refrigeration, 30 (1) 50-57.
 ##
[13] J. W. Lee, J. Y. Jung, S. G. Lee, Y. T. Kang (2011) “CO2 bubble absorption enhancement in methanol-based nanofluids”, International journal of refrigeration, 34 (8),1727-1733.
 ##
[14] S. Parvin, R. Nasrin, M. A. Alim, N. F. Hossain, A. J. Chamkha (2012) “Thermal conductivity variation on natural convection flow of water-alumina nanofluid in an annulus” International Journal of Heat and Mass Transfer 55, 5268-5274.
 ##
[15] H. R. Ashorynejad, A. A. Mohamad, M. Sheikholeslami (2013) “Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method” International Journal of  Thermal Sciences 64, 240-250.
 ##
[16] C. H. Chon, K. D. Kihm, S. P. Lee, S. U. S. Choi (2005) “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement” Applied Physical Letter 87, 153107.
 ##
[17] J. Koo, C. Kleinstreuer, (2004) “A new thermal conductivity model for nanofluids” Journal of Nanoparticle Research, 6, 577-588.
 ##
[18] A. G. A. Nnanna, (2007) “Experimental model of temperature-driven nanofluid” Journal of Heat Transfer, 129, 697-704
 ##
[19] S. U. S. Choi, and J. A. Eastman (1995) “Enhancing thermal conductivity of fluids with nanoparticles” Argonne National Lab., IL United States, No. ANL/MSD/CP--84938; CONF-951135-29.
 ##
[20] S. Krishnamurthy P. Bhattacharya, P. E. Phelan (2006) "Enhanced Mass Transport in Nanofluids” Nano Letters, 6, 419-423.
 ##
[21] J. K., Kim, J. Y. Jung, Y.T. Kang (2006) "The effect of nano-particles on the bubble absorption performance in a binary nanofluid” International Journal of Refrigeration, 29, 22–29.
 ##
[22] X. Ma et al., (2009) “Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid” International Communications in Heat and Mass Transfer, 36 (7), 657-660.
 ##
[23] E. Nagya, T. Feczkóa, B. Koroknai (2007) "Enhancement of oxygen mass transfer rate in the presence of nanosized particles " Chemical Engineering Science, 62, 7391-7398.
 ##
[24] B.Olle, et al., (2006) "Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles, "Industrial Engineering Chemical Research, 45, 4355-4363.
##
[25] Z., Samadi, M. Haghshenasfard, A. Moheb, (2014) “CO2 Absorption Using Nanofluids in a Wetted-Wall Column with External Magnetic Field” Chemical Engineering Technology, 37, 462-470.
 ##
[26] A. K. Suresh and S. Bhalerao (2001) “Rate intensification of mass transfer process using ferrofluids” Indian journal of pure & applied physics, 40, 172-784.
 ##
[27] C. Reichert, W. H. Hoell, M. Franzreb (2004) “Mass transfer enhancement in stirred suspensions of magnetic particles by the use of alternating magnetic fields” Powder Technology, 145 (2), 131-138.
 ##
[28] S. Komati and A. K. Suresh (2008) “CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids” Journal of chemical technology and biotechnology, 83 (8), 1094-1100.
 ##
[29] X. F. Niu, K. Du, F. Xiao (2010) “Experimental study on ammonia-water falling film absorption in external magnetic fields”, International journal of refrigeration, 33 (4), 686-694.
 ##
[30] W. D.Wu,  G.Liu, S. X. Chen, H. Zhang (2013) “Nanoferrofluid addition enhances ammonia/water bubble absorption in an external magnetic field” Energy and Buildings, 57, 268-277.
 ##
## 
[32] K. Darvanjooghi et al., (2017) “Investigation of the effect of magnetic field on mass transfer parameters of CO2 absorption using Fe3O4‐water nanofluid” AIChE Journal, 63 (6), 2176-2186.
 ##
[33] D. Feng et al., (2018) “Mass transfer in ammonia-based CO2 absorption in bubbling reactor under static magnetic field” Chemical Engineering Journal, 338, 450-456.
 ##
[34] G. Taguchi, (1985) "Quality Engineering in Japan" Bulletin of the Japan Society for Precision Engineering, 19 (4),  237-242.
 ##
[35] G. Taguchi, (1987) System of Experimental Design, Unipub/Kraus, International Publication.
 ##
[36] R. K. Roy (1990), a primer on Taguchi method, Van No strand Reinhold, New York.
## 
[37] Gerardi et al., (2007) “Nuclear magnetic resonance measurement of diffusion coefficients in alumina nanofluids” Transactions of the American Nuclear Society 96, 485-486.
 ##
[38] J.Y. Jung, J. W. Lee, Y. T. Kang (2012) “CO2 absorption characteristics of nanoparticle suspensions in methanol” Journal of Mechanical Science and Technology 26 (8) 2285-2290.
 ##
[39] I. T. Pineda, J. W. Lee, I. Jung, Y. T. Kang (2012) “CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber” International Journal of Refrigeration 35, 1402 -1409.
 ##
[40] R. Bagheri et al., (2019) “Investigation of the CO2 absorption in pure water and MDEA aqueous solution including amine functionalized multi-wall carbon nano tubes” Journal of Molecular Liquid, 293, 111431.
 ##
[41] S. S. Ashrafmansouri and M. Nasr Esfahany (2014) “Mass transfer in nanofluids: A review” International Journal of Thermal Sciences, 82, 84-99.
##