تاثیر تابش امواج ماکرو بر فلوتاسیون کانی های سولفیدی مس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد فرآوری مواد معدنی،دانشگاه تربیت مدرس

2 عضو هیئت علمی دانشگاه تربیت مدرس تهران

3 گروه فرآوری مواد معدنی دانشگاه تربیت مدرس

چکیده

فلوتاسیون یکی از مهمترین روشهای فرآوری مواد معدنی است که کارآیی آن تحت تاًثیر دو عامل شیمی سطح و درجه آزادی است. در این تحقیق تاًثیر تابش امواج ماکرو بر شیمی سطح و درجه آزادی کانیهای سولفیدی مس با هدف یافتن روش پیش-عمل آوری مناسب برای دو کانسنگ مختلف (سرچشمه و پلنگی) بررسی شد. در آزمایشهای فلوتاسیون بر روی تاًثیر تابش امواج ماکرو بر شیمی سطح، عیار و بازیابی نمونه‌ مس سرچشمه پس از 90 ثانیه تابش (550 وات) به ترتیب 7 و 2 درصد افزایش یافت، اما در نمونه مس پلنگی عیار و بازیابی به ترتیب 4 و 8 درصد کاهش یافت. همچنین آزمایشهای فلوتاسیون بر روی تاًثیر تابش امواج ماکرو بر درجه آزادی نشان داد که برای افزایش عیار و بازیابی نمونه مس سرچشمه به ترتیب به میزان 4 و 6 درصد نیاز به 180 ثانیه تابش امواج ماکرو با توان 550 وات است اما در نمونه مس پلنگی برای همین میزان افزایش در عیار و بازیابی، نیاز به 600 ثانیه تابش امواج ماکرو است. علاوه بر این، ثابت نرخ فلوتاسیون نمونه های مس سرچشمه و پلنگی پس از 120 ثانیه تابش امواج ماکرو به ترتیب 0/2 و 0/1 بر دقیقه افزایش یافت.

کلیدواژه‌ها

موضوعات


[1]  سید محمد جواد کلینی، مرتضی میرسرخ، (1392)، " تاثیر تابش ماکروویو  بر خواص کاربردی کانی ها در فرآوری مواد معدنی"، نشریه توسعه معادن، شماره 44.
##
[2]  امید سلمانی نوری، اکبر مهدیلو، مهدی ایران ن‍‍ژاد، سالار علیزاده،  (1392)، "بررسی تأثیر تابش ماکروویو در فلوتاسیون ایلمنیت در حضور گانگ‌های مختلف"، سی و دومین گردهمایی و نخستین کنگره بین المللی تخصصی علوم زمین.
##
[3]  کیانوش بارانی، (1389) ، "بررسی تاثیر عمل آوری کانه آهن با ماکروویو  بر فرآیند خردایش و خواص مغناطیسی آن"، رساله دکتری، دانشکده فنی و مهندسی دانشگاه تربیت مدرس.
##
[4] W.H. Sutton, M.H. Brooks and Chabinsky; (1988); “Microwave Processing of Materials”. Pittsburgh, PA (USA); Materials Research Society.
##
[5] G. Scott; (2006); “performance microwave pretreatment of low grade copper ore to enhance milling and liberation”, Thesis for the degree of Master of Science in chemical engineering, university of Stellenbosch.
##
 [6] S. Kingman, N. Rowson; (1998); Microwave treatment of minerals– a review, Minerals Engineering, 11, 1081-1087.
##
 [7] K. Haque; (1999); “Microwave energy for mineral treatment processes– a brief review”, Int. J. Miner process, 57, 1-24.
##
 [8] S.W. Kingman, K. Jackson, S.M. Bradshaw, N.A. Rowson and R. Greenwood; (2004); “An Investigation into the Influence of Microwave Treatment on Mineral Ore Comminution”, Powder technology, 146, 176-184.
##
[9] S.W. Kingman, W. Vorster, (2000), “The effect of microwave radiation on the processing of Palabora copper ore”, The Journal of The South African Institute of Mining and Metallurgy, May/June, 197-204.
##
[10] N.M. Can, I. Bayraktar, (2007), “Effect of microwave treatment on the flotation and magnetic separation properties of pyrite, chalcopyrite, galena and sphalerte”, Minerals and Metallurgical processing, 24, 185-192.
##
[11] W. Worster, N. Rowson, S. Kingman, (2001),“The effect of microwave radiation upon the processing of Neves Corvo copper ore”, Int. J. Miner. Process, 63, 29-44.
##
[12] A. Orumwense, T. Negeri, (2004), “Impact of microwave irradiation on the processing of a sulfide ore”, Miner. Metall. Process, 21, 44–51.
##
[13] C. Sahyoun, N. Rowson, S. Kingman, L. Groves, S. Bradshaw, (2005), “The influence of microwave pretreatment on copper flotation”, The Journal of The South African Institute of Mining and Metallurgy.
##
[14] E. Kaya, (2010), “Effect of Microwave Radiation on the Floatation of Copper Sulfide Ores”, Asian Journal of Chemistry, 22, 7874-7882.
##
[15] J. Kobushes, (2010),”Microwave enhanced processing of ores”. PhD thesis, University of Nottingham,UK.
##
[16] A. Batchelor, D. Jones, S. Plint,, S.W. Kingman, 2015, “Deriving the ideal ore texture for microwave treatment of metalliferous ores”, Miner. Eng, 84, 116–129.
##
[17] A. Batchelor, D. Jones, S. Plint, , S.W. Kingman, (2016), “Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment”, Minerals Engineering, 94 , 61–75.
##
 [18] بهناز میرشکاری، سید محمد جواد کلینی، بهزاد شهبازی، (1395)، "بررسی اثر تابش ماکروویو بر فلوتاسیون کالکوپیریت"، چهارمین کنگره بین المللی معدن و صنایع معدنی ایران به همراه ششمین کنفرانس مهندسی معدن ایران.
##
 [19] بهناز میرشکاری، سید محمد جواد کلینی، بهزاد شهبازی، (1395)، "اثر تابش ماکروویو بر فلوتاسیون کالکوسیت"، سی و پنجمین گردهمایی علوم زمین.
##
 [20] J. Coates, (2000), “Interpretation of Infrared Spectra, A Practical Approach”, John Wiley & Sons Ltd, Encyclopedia of Analytical Chemistry, 10815-10837.
##
[21] J.G. Dunn, C. Muzenda, (2001), “Thermal oxidation of covellite”, Thermochimica Acta 369, pp 117-123.
##
[22] R.K. Rath, S. Subramanian and T. Pradeep, (2000), “Surface Chemical Studies on Pyrite in the Presence of Polysaccharide-Based Flotation Depressants”, Journal of Colloid and Interface Science, 229, 82-91.
##
[23] E.R. Mejia, J.D. Ospina, L. Osorno, M.A. Marquez and A.L. Morales, (2015), “Fourier Transform”, Chapter 8: Signal Processing and Physical Sciences, Intec, 197-213.
##
[24] Y. Zhang, Z.H. Cao, Y. Cao, C. Sun, (2013), “FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces”, Journal of Molecular Structure, 1048, 434-440.
##
[25] Laajalehto K., Leppinen J., Kartio I., Laiho T., 1999, “XPS and FTIR study of the influence of electrode potential onactivation of pyrite by copper or lead”, Colloids and Surfaces, Physicochemical and Engineering Aspects, 154, 193–199.
##
[26] Z. Wang, Y. Qian, X. Long-hua, B. Dai, X. Jun-hui, F. Kaibin, (2015), “Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant”, Minerals Engineering, 74, 86–90.
##
[27] S. Mustafa, A. Hamid, A. Naeem, (2004), “Xanthate adsorption studies on chalcopyrite ore”, Int. J. Miner. Process,74, 317– 325.
##
[28] A. Adamou, G. Manos, N. Messios, L. Georgiou, C. Xydas, C. Varotsis, (2016), “Probing the whole ore chalcopyrite–bacteria interactions and jarosite biosynthesis by Raman and FTIR microspectroscopies”, Bioresource Technology, 214, 852–855.
##
[29] Z. Nedjar, M. Bouhenguel and A. Djebaili, (2009), “Synthesis and Structural Characterization of Xanthate (KEX) in Sight of Their Utilization in the Processe s of Sulphides Flotation”, Journal of Minerals & Materials Characterization & Engineering, 8, 469-477.
##
[30] G. Liua, Y. Huanga, X. Qua, J. Xiaoa, X. Yanga, X. Zhenghe, (2016), “Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1,2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contactangle, zeta potential and micro-flotation”, Colloids and Surfaces, Physicochem. Eng. Aspects, 503, 34-42.
##
 [31] Z. Nedjar, D. Barkat, (2013), “Electrochemistry of Copper Activation of Sphalerite and Potassium Isobutyl Xanthate (KIBX) Synthesized Collectors Adsorption”, Iranian Journal of Chemical Engineering, 10.
##
[32] J. Lynn Bowden, (2015), “Voltammetric Investigation of Xanthate Chemisorption on a Chalcopyrite Surface”, A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Metallurgical Engineering, Montana Tech of the University of Montana, USA.
##
[33] Z. Nedjar, D. Barkat, (2015), “Studies of Activation of Galena by Copper and Xanthate (PIPX) Synthesized Collectors Adsorption”, Journal of Engineering Science and Technology,10, 932-940.
##