CFD simulation of the desalination process of salt water by Direct Contact Membrane Distillation(DCMD)

Document Type : Research paper

Authors

1 Department of Engineering and Technology Imam Khomeini International University , qazvin . iran

2 Faculty of Engineering and Technology Department of Mechanical Engineering qazvin . iran

Abstract

In this research, the desalination process has been solved by the direct contact membrane distillation process in the flatThis research models the desalination process using a direct contact membrane distillation method in a flat plate configuration with a PTFE membrane. The model employs computational fluid dynamics to solve the differential equations for momentum, heat, and mass transfer. Convective heat transfer in the membrane region is neglected, and mass transfer is described by empirical equations. The simulation results were then validated against available experimental data. Increasing the feed saltwater temperature from 42°C to 78°C led to a significant rise in permeate flux, from 3.59 L.m-2.hr-1 to 18.64 L.m-2.hr-1. The results demonstrates that the distillation flux is directly proportional to the stream velocities and membrane porosity, but inversely proportional to the feed salt concentration, permeate inlet temperature, membrane thickness, pore tortuosity, and membrane conductive heat transfer coefficient.

Keywords

Main Subjects


[1]          E. Hameeteman, “Future water (In) security: Facts, figures, and predictions,” Glob. Water Inst., vol. 1, pp. 1–16, 2013.
 
[2]          M. Qasim, M. Badrelzaman, N. N. Darwish, N. A. Darwish, and N. Hilal, “Reverse osmosis desalination: A state-of-the-art review,” Desalination, vol. 459, no. December 2018, pp. 59–104, 2019, doi: 10.1016/j.desal.2019.02.008.
 
[3]          M. Shatat, M. Worall, and S. Riffat, “Opportunities for solar water desalination worldwide: Review,” Sustain. Cities Soc., vol. 9, pp. 67–80, 2013, doi: 10.1016/j.scs.2013.03.004.
 
[4]          J. Krukowski, “Opening the’black box’: Regulations and recycling drive use of membrane technologies,” Pollut. Eng., vol. 33, no. 6, p. 20, 2001.
 
[5]          T. Younos and K. E. Tulou, “Overview of desalination techniques,” J. Contemp. Water Res. Educ., vol. 132, no. 1, pp. 3–10, 2005.
 
[6]          B. B. Ashoor, S. Mansour, A. Giwa, V. Dufour, and S. W. Hasan, “Principles and applications of direct contact membrane distillation (DCMD): A comprehensive review,” Desalination, vol. 398, pp. 222–246, 2016, doi: 10.1016/j.desal.2016.07.043.
 
[7]          M. Ghadiri, S. Fakhri, and S. Shirazian, “Modeling and CFD simulation of water desalination using nanoporous membrane contactors,” Ind. Eng. Chem. Res., vol. 52, no. 9, pp. 3490–3498, 2013, doi: 10.1021/ie400188q.
 
[8]          A. Bahmanyar, M. Asghari, and N. Khoobi, “Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation,” Chem. Eng. Process. Process Intensif., vol. 61, pp. 42–50, 2012, doi: 10.1016/j.cep.2012.06.012.
 
[9]          S. G. Lovineh, M. Asghari, and B. Rajaei, “Numerical simulation and theoretical study on simultaneous effects of operating parameters in vacuum membrane distillation,” Desalination, vol. 314, pp. 59–66, 2013.
 
[10]        F. Eleiwi, N. Ghaffour, A. S. Alsaadi, L. Francis, and T. M. Laleg-Kirati, “Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process,” Desalination, vol. 384, pp. 1–11, 2016, doi: 10.1016/j.desal.2016.01.004.
 
[11]        A. Khalifa, H. Ahmad, M. Antar, T. Laoui, and M. Khayet, “Experimental and theoretical investigations on water desalination using direct contact membrane distillation,” Desalination, vol. 404, pp. 22–34, 2017, doi: 10.1016/j.desal.2016.10.009.
 
[12]        H. J. Hwang, K. He, S. Gray, J. Zhang, and I. S. Moon, “Direct contact membrane distillation (DCMD): Experimental study on the commercial PTFE membrane and modeling,” J. Memb. Sci., vol. 371, no. 1–2, pp. 90–98, 2011, doi: 10.1016/j.memsci.2011.01.020.
 
[13]        F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, vol. 6. Wiley New York, 1996.
 
[14]        H. B. Harandi, A. Asadi, H. Fathi, and P. C. Sui, “Combined macroscopic and pore scale modeling of direct contact membrane distillation with micro-porous hydrophobic membranes,” Desalination, vol. 514, no. June, p. 115171, 2021, doi: 10.1016/j.desal.2021.115171.
 
[15]        A. Esfandiari, A. Hosseini Monjezi, M. Rezakazemi, and M. Younas, “Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process,” Appl. Therm. Eng., vol. 163, no. September, p. 114391, 2019, doi: 10.1016/j.applthermaleng.2019.114391.
 
[16]        J. M. Prausnitz, R. N. Lichtenthaler, and E. G. De Azevedo, Molecular thermodynamics of fluid-phase equilibria. Pearson Education, 1998.
 
[17]        K. W. Lawson and D. R. Lloyd, “Membrane distillation,” vol. 124, 1997.
 
[18]        M. Qtaishat, T. Matsuura, B. Kruczek, and M. Khayet, “Heat and mass transfer analysis in direct contact membrane distillation,” Desalination, vol. 219, no. 1–3, pp. 272–292, 2008, doi: 10.1016/j.desal.2007.05.019.
 
[19]        A. O. Imdakm and T. Matsuura, “A Monte Carlo simulation model for membrane distillation processes: Direct contact (MD),” J. Memb. Sci., vol. 237, no. 1–2, pp. 51–59, 2004, doi: 10.1016/j.memsci.2004.03.005.
 
[20]        P. Chang and C. R. Wilke, “Correlation of diffusion coefficients in dilute solutions,” AIChE J., pp. 264–270, 1955.
 
[21]        Z. Kuang, R. Long, Z. Liu, and W. Liu, “Analysis of temperature and concentration polarizations for performance improvement in direct contact membrane distillation,” Int. J. Heat Mass Transf., vol. 145, p. 118724, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.118724.
 
[22]        T.-C. Chen, C.-D. Ho, and H.-M. Yeh, “Theoretical modeling and experimental analysis of direct contact membrane distillation,” J. Memb. Sci., vol. 330, no. 1–2, pp. 279–287, 2009.