Partitioning of protease using an ionic liquid based aqueous two phase system: Experimental study and thermodynamic modeling

Document Type : Research paper

Authors

Chemical Engineering Department, Faculty of Engineering, Arak University, Arak, Iran

Abstract

Objective: The aqueous two-phase system (ATPS) as a liquid-liquid fractionation technique has gained an interest because of great potential for recovery and purification of many biological materials such as proteins, enzymes, and nucleic acids. Ionic liquids (ILs), are a group of organic salts comprising entirely of ions and can be suggested as a suitable solvent for a specific purpose, especially separation processes. Among the various ILs, the alkyl-sulfate derivatives have the great advantages such as synthesizing easily in a halide-free way at a reasonable cost with relatively low viscosity and considering as a promising IL in ATPSs. In the present study, the partitioning of protease using the ATPS [1-Ethyl-3-Methyl-Imidazolium][EthylSulfate]([emim][eSO4])/Na2CO3 was evaluated. The effect of parameters, such as the initial concentration of enzyme (protease), concentration of ionic liquid (IL) ([emim][eSO4]) and concentration of salt (sodium carbonate) on the purification of protease was investigated.
Materials and Methods: The design experiment of BOX-Behnken as a method of the response surface methodology (RSM) was applied to minimize the number of runs and the process optimization.
Results: The optimum conditions were enzyme/IL of 0.210 and enzyme/salt of 0.381 and concentration of enzyme in the top phase (IL rich phase) and separation yield were obtained, 4 ppm and 94%, respectively.
Conclusions: The results showed that the protein tends to be extracted in a top phase, hence the protein concentration in the bottom phase (salt rich phase) was negligible. Furthermore, the experimental results are correlated successfully using non-random two liquid non-random factor (NRTL-NRF) equation as a short-range contribution.

Keywords

Main Subjects


[1] Seader, J. D., Henley, E. J. (2006), “Separation Process Principles”, John Wiley & Sons Inc., New York.
 
[2] Perry, R. H., Green, D. W., Aloney, J. O. (1997), “Chemical Engineering Handbook”, 7th Ed., Mc Grow Hill, New York.
 
]3[ Riedl, W., Raiser, T. (2008), “Membrane-supported extraction of biomolecules with aqueous two-phase system”, Desalination, 224, 160-167. https://doi.org/10.1016/j.desal.2007.02.088
 
[4] Gustafsson, A., Wennerstrom, H., Tjerneld, F. (1986), “Aqueous polymer two-phase systems in biotechnology”, Fluid Phase Equilibria, 29, 365-371. https://doi.org/10.1016/0378-3812(86)85036-1
 
[5] Albertsson, P. A. (1970), “Partition of cell particles and macromolecules in polymer two-phase systems”, Advances in Protein Chemistry, 24, 309-341. https://doi.org/10.1016/S0065-3233(08)60244-2
 
]6[ Zafarani-Moattar, M. T., Hamzehzadeh, S., Nasiri, S. (2012), “A new aqueous biphasic system containing polypropylene glycol and a water-miscible ionic liquid”, Biotechnology Progress, 28, 146-156. https://doi.org/10.1002/btpr.718
 
]7[ Pereira, J. F. B., Lima, A. S., Freire, M. G., Coutinho, J. A. P. (2010), “Ionic liquids as adjuvants for the tailored extraction of biomolecules in aqueous biphasic systems”, Green Chemistry, 12, 1661-1669. https://doi.org/10.1016/j.gce.2021.11.004
 
 
]8[ Dreyer, S., Salim, P., Kragl, U. (2009), “Driving forces of protein. Partitioning in an ionic liquid-based aqueous two-phase system”, Biochemical Engineering Journal, 46, 176-185. https://doi.org/10.1016/j.bej.2009.05.005
 
]9[ Zhang, J., Zhang, Y., Chen, Y., Zhang, S. (2007), “Mutual coexistence curve measurement of aqueous biphasic systems composed of [bmim][BF4] and glycine, l-serine, and l-proline, respectively”, Journal of Chemical & Engineering Data, 52, 2488-2490. https://doi.org/10.1021/je0601053
 
]10 [Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., Rogers, R. D. (1998), “Room temperature ionic liquids as novel media for clean liquid-liquid extraction”, Chemical Communications, 16, 1765-1766. https://doi.org/10.1039/A803999B
 
]11[ Wu, B., Zhang, Y., Wang, H., Yang, L. (2008), “Temperature dependence of phase behavior for ternary systems composed of ionic liquid + sucrose + water”, The Journal of Physical Chemistry B, 112, 13163-13165. https://doi.org/10.1021/jp805483k
 
[12] Singh, T., Kumar, A. (2008), “Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach”, The Journal of Physical Chemistry B, 112, 12968-12972. https://doi.org/10.1021/jp8059618
 
]13[ Gomez, E., Gonzalez, B., Calvar, N., Tojo, E., Dominguez, A. (2006), “Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures”, Journal of Chemical & Engineering Data, 51, 2096-2102. https://doi.org/10.1021/je060228n
 
]14[ Sorensen, J. M., Magnussen, T., Rasmussen, P., Frendenslund, A. (1979), “Liquid—liquid equilibrium data: Their retrieval, correlation and prediction Part II: Correlation”, Fluid Phase Equilibria, 3, 47-82. https://doi.org/10.1016/0378-3812(79)80015-1
 
]15[ Haghtalab, A., Paraj, A. (2012), “Computation of liquid–liquid equilibrium of organic-ionic liquid systems using NRTL, UNIQUAC and NRTL-NRF models”, Journal of Molecular Liquids, 171, 43-49. https://doi.org/10.1016/j.molliq.2012.04.008
 
]16[ Wang, Y., Xu, X. H., Yan, Y. S., Han, J., Zhang, Z. L. (2010), “Phase behavior for the [Bmim] BF4 aqueous two-phase systems containing ammonium sulfate/sodium carbonate salts at different temperatures: experimental and correlation”, Thermochimica Acta, 501, 112–118. https://doi.org/10.1016/j.tca.2010.01.020
 
[17] Han, J., Wang, Y., Yu, C., Li, Y., Kang, W., Yan, Y. (2012), “(Liquid + liquid) equilibrium of (imidazolium ionic liquids + organic salts) aqueous two-phase systems at T = 298.15 K and the influence of salts and ionic liquids on the phase separation”, The Journal of Chemical Thermodynamics, 45, 59-67. https://doi.org/10.1016/j.jct.2011.09.004
 
]18[ Haghtalab, A., Mokhtarani, B. (2004), “The new experimental data and a new thermodynamic model based on group contribution for correlation liquid–liquid equilibria in aqueous two-phase systems of PEG and (K2HPO4 or Na2SO4)”, Fluid Phase Equilibria, 215, 151-161. https://doi.org/10.1016/j.fluid.2003.08.004
 
]19[ Alvarenga, B. G., Virtuoso, L. S., Lemes, N. H. T., Luccas, P. O. (2013) “Phase behavior at different temperatures of an aqueous two phase ionic Liquid containing ([Bmim]BF4 + manganese sulfate + water)”, The Journal of Chemical Thermodynamics, 61, 45-50. https://doi.org/10.1016/j.jct.2013.01.025
 
]20[ Haghtalab, A., Paraj, A., Mokhtarani, B. (2013), “[1-Ethyl-3-Methyl-Imidazolium] [EthylSulfate]-based aqueous two phase systems: New experimental data and new modelling”, The Journal of Chemical Thermodynamics, 65, 83-90. https://doi.org/10.1016/j.jct.2013.05.026
 
]21[ Deive, F. J., Rodriguez, A., Marrucho, I. M., Rebelo, L. P. N. (2011), “Aqueous biphasic systems involving alkylsulfate-based ionic liquids”, The Journal of Chemical Thermodynamics, 43, 1565-1572. https://doi.org/10.1016/j.jct.2011.04.024
 
]22[ Zafarani-Moattar, M. T., Hamzehzadeh, S. (2011), “Effect of pH on the phase separation in the ternary aqueous system containing the hydrophilic ionic liquid 1-butyl-3-methylimidazolium bromide and the kosmotropic salt potassium citrate at T = 298.15 K”, Fluid Phase Equilibria, 304, 110-120. https://doi.org/10.1016/j.fluid.2011.01.023
]23[ Benavides, J., Aguilar, O., Lapizco‐Encinas, B.  H., Rito‐Palomares, M. (2008), “Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies”, Chemical Engineering & Technology, 31, 838-845. https://doi.org/10.1002/ceat.200800068
 
]24 [Simoni, L. D., Lin, Y., Brennecke, J. F., Stadtherr, M. A. (2008), “Modeling liquid−liquid equilibrium of ionic liquid systems with NRTL, Electrolyte-NRTL, and UNIQUAC”, Industrial & Engineering Chemistry Research, 47, 256-272. https://doi.org/10.1021/ie070956j
 
[25] Rogers, R. D., Seddon, K. R. (2003), “Ionic Liquids-Solvents of the Future?”, Science, 32, 792-793. https://doi.org/10.1126/science.1090313
 
[26] Huddleston, J. G., Willauer, H. D., Rogers, R. D. (2003), “Phase diagram data for several PEG + salt aqueous biphasic Systems at 25 °C”, Journal of Chemical & Engineering Data, 48, 1230-1236. https://doi.org/10.1021/je034042p
 
]27[ Calvar, N., Gonzalez, B., Gomez, E., Dominguez, A. (2008), “Vapor–Liquid Equilibria for the ternary system ethanol + water + 1-ethyl-3-methylimidazolium ethylsulfate and the corresponding binary systems containing the ionic liquid at 101.3 kPa”, Journal of Chemical & Engineering Data, 53, 820-825. https://doi.org/10.1021/je700710d
 
[28] Wu, B., Zhang, Y., Wang, H. (2008), “Phase behavior for ternary Systems Composed of Ionic Liquid + Saccharides + Water”, The Journal of Physical Chemistry B, 112, 6426-6429. https://doi.org/10.1021/jp8005684
 
[29] Gutowski, K. E., Broker, G. A., Willauer, H. D., Huddleston, J. G., Swatloski, R. P., Holbrey, J. D., Rogers, R. D. (2003), “Controlling the aqueous miscibility of ionic liquids: aqueous biphasic system of water-miscible ionic liquids and water-structuring salts for recycle, met, and separations”, Journal of American Chemical Society, 125, 6632-6633. https://doi.org/10.1021/ja0351802
 
[30] Bridges, N. J., Gutowski, K. E., Rogers, R. D. (2007), “Investigation of aqueous biphasic system formed from solutions of chaotropic salt with kosmotropic salt”, Green Chemistry, 9, 177-183. https://doi.org/10.1039/B611628K
 
[31] Pei, Y., Wang, J., Liu, L., Wu, K., Zhao, Y. (2007), “Liquid−Liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts”, Journal of Chemical & Engineering Data, 52, 2026-2031. https://doi.org/10.1021/je700315u
 
[32] Sadeghi, R., Golabiazar, R., Shekaari, H. (2010), “The salting-out effect and phase separation in aqueous solution of tri-sodiuزm citrate and 1-butyl-3-methylimidazolium bromide”, The Journal of Chemical Thermodynamics, 42, 441-453. https://doi.org/10.1016/j.jct.2009.10.007
 
[33] Banik, R. M., Prakash, M. (2006), “Purification and characterization of laundry detergent compatible alkaline protease from Bacillus cereus”, Indian journal of biotechnology, 5, 380-384.
 
[34] Nalinanon, S., Benjakul, S., Visessanguan, W., Kishimura, H. (2009), “Partitioning of protease from stomach of albacore tuna (Thunnus alalunga) by aqueous two-phase systems”, Process Biochemistry, 44, 471-476. https://doi.org/10.1016/j.procbio.2008.12.018
 
[35] Amid, M., Shuhaimi, M., Sarkerc, M. Z. I., Manap, M.Y.A (2012), “Purification of serine protease from mango (Mangifera Indica Cv. Chokanan) peel using an alcohol/salt aqueous two phase system”, Food Chemistry, 132, 1382-1386. https://doi.org/10.1016/j.foodchem.2011.11.125
 
[36] Rawdkuen, S., Pintathong, P., Chaiwut, P., Benjakul, S. (2011), “The partitioning of protease from Calotropis procera latex by aqueous two-phase systems and its hydrolytic pattern on muscle proteins” Food and Bioproducts Processing, 89, 73-80. https://doi.org/10.1016/j.fbp.2010.02.001
 
[37] Porto, T. S., Silva, G. M. M., Porto, C. S., Cavalcanti, M. T. H., Neto, B. B., Lima-Filho, J. L., Converti, A., Porto, A. L. F., Pessoa, A. (2008), “Liquid–liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system”, Chemical Engineering and Processing: Process Intensification, 47, 716-721. https://doi.org/10.1016/j.cep.2006.12.004
 
[38] Pericin, M. D., Madjarev-Popovic, Z. S., Vastag, G. (2008), “Partitioning of acid protease from Penicillium roqueforti in aqueous two-phase system Polyethylene Glicol/Phosphate” Acta Periodica Technologica, 39, 171-180. https://doi.org/10.2298/APT0839171P
 
[39] Khayati, G., Firoozi, M., Ahmadi, M. (2016), “Partitioning of protease in PEG/sodium citrate and potassium citrate aqueous two-phase system”, Journal of Separation Science and Engineering, 8, 1-6. (In Persian) https://doi.org/10.22103/jsse.2016.1143
 
[40] Alhelli, A. M., Abdul Manap, M. Y., Mohammed, A. S., Mirhosseini, H., Suliman, E., Shad, Z., Mohammed, N. K., Hussin, A. S. M. (2016), “Response surface methodology modelling of an aqueous two-phase system for purification of protease from penicillium candidum (PCA 1/TT031) under solid state fermentation and its biochemical characterization”, International Journal of Molecular Sciences, 17, 1-23. https://doi.org/10.3390/ijms17111872
 
[41] Bai, Z., Chao, Y., Zhang, M., Han, C., Zhu, W., Chang, Y., Li, H., Sun, Y. (2013), “Partitioning behavior of papain in ionic liquids-based aqueous two-phase systems”, Journal of Chemistry, 1-6. https://doi.org/10.1155/2013/938154
 
[42] Lu, Y., Lu, W., Wang, W., Guo, Q., Yang, Y. (2011), “Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system”, Talanta, 85, 1621-1626. https://doi.org/10.1016/j.talanta.2011.06.058
 
]43[ Zaytsev, I. D., Assev, G. G. (1992), “Properties of Aqueous Solutions of Electrolytes”, CRC Press Inc.
 
]44[ Karkas, T. Onal, S. (2012), “Characteristics of invertase partitioned in poly(ethylene glycol)magnesium sulfate aqueous two-phase system”, Biochemical Engineering Journal, 60, 142-150. https://doi.org/10.1016/j.bej.2011.11.005