Comparative Removal of VOCs from Aqueous Environment Using Ozonation, Fe/H2O2 and UV/Fe/H2O2 Processes

Document Type : Research paper

Authors

1 Department of Chemical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran

2 Department of Chemical Engineering, Abadan Branch, Islamic Azad University

Abstract

VOCs are one of the most important and dangerous pollutants in aquatic environments, which must be completely removed from aquatic environments due to their high toxicity and many harms to human health and other organisms. In this research, the removal of phenol from the aqueous environment was done by ozonation, Fe/H2O2 and UV/Fe/H2O2 processes on an experimental scale. In order to conduct research on experiments and the effect of interaction between parameters and to determine the optimal conditions, the design of the experiments was carried out using the RSM method. All tests were performed at ambient temperature. Under optimal conditions of the parameters, 99% of phenol was removed from aqueous solutions by the Fe/H2O2 method, 99.3% was removed by the Fenton UV/Fe/H2O2 method, and 99.5% of phenol was removed by the ozonation process.
Using the RSM method, a quadratic equation with a very high correlation coefficient was fitted. The R2 and R2(adj) values of the predicted model for phenol removal in the Fe/H2O2 process were 95.92% and 92.25% respectively, and in the UV/F2/H2O2 process, 96% and 92.41% and in the ozonation process, 95.78% and 91.99% respectively.

Keywords

Main Subjects


[1] M. Kampa,E. Castanas (2008)"Human health effects of air pollution", Environmental pollution,  151, no. 2,  362-367.
 
[2] W. Miekisch, J. K. Schubert,G. F. Noeldge-Schomburg (2004)"Diagnostic potential of breath analysis—focus on volatile organic compounds", Clinica chimica acta, 347, no. 1-2,  25-39.
 
[3]  R.-J. Huang, Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K. R. Daellenbach, J. G. Slowik, S. M. Platt,F. Canonaco (2014)"High secondary aerosol contribution to particulate pollution during haze events in China", Nature,  514, no. 7521,  218-222.
 
[4]  I. A. f. R. o. Cancer, Agents classified by the IARC monographs, volumes 1-129, 2021," ed.
 
[5]  T. K. Poddar,K. K. Sirkar (1997)"A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions", Journal of membrane science,  132, no. 2,  229-233.
 
[6]  W. Li, J. Wang,H. Gong (2009)"Catalytic combustion of VOCs on non-noble metal catalysts", Catalysis today,  148, no. 1-2,  81-87.
 
[7]  B. Liu, J. Ji, B. Zhang, W. Huang, Y. Gan, D. Y. Leung, H. Huang (2022)"Catalytic ozonation of VOCs at low temperature: A comprehensive review", Journal of Hazardous Materials, 442, p. 126847.
 
[8]  M. Handa, Y. Lee, M. Shibusawa, M. Tokumura,Y. Kawase (2013)"Removal of VOCs in waste gas by the photo‐Fenton reaction: effects of dosage of Fenton reagents on degradation of toluene gas in a bubble column", Journal of Chemical Technology & Biotechnology,  88, no. 1,  88-97.
 
[9]  Y. Lee, D. Gerrity, M. Lee, S. Gamage, A. Pisarenko, R. A. Trenholm, S. Canonica, S. A. Snyder,U. Von Gunten (2016)"Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: prediction of abatement efficiency, energy consumption, and byproduct formation", Environmental science & technology,  50, no. 7,  3809-3819.
 
[10] L. Chen, J. Ma, X. Li, J. Zhang, J. Fang, Y. Guan,P. Xie (2011)"Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles", Environmental Science & Technology,  45, no. 9,  3925-3930.
 
[11] J. J. López‐Peñalver, M. Sánchez‐Polo, C. V. Gómez‐Pacheco,J. Rivera‐Utrilla (2010)"Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes", Journal of Chemical Technology & Biotechnology,  85, no. 10,  1325-1333.
 
[12] M. Li, Z. Qiang, C. Pulgarin,J. Kiwi (2016)"Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor", Applied Catalysis B: Environmental,  187,  83-89.
 
[13] L. Škodič, S. Vajnhandl, J. Volmajer Valh, T. Željko, B. Vončina,A. Lobnik (2017)"Comparative study of reactive dyes oxidation by H2O2/UV, H2O2/UV/Fe2+ and H2O2/UV/Fe Processes", Ozone: Science & Engineering,  39, no. 1,  14-23.
 
[14] Y.-H. Chuang, K. M. Parker,W. A. Mitch (2016)"Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process", Environmental science & technology,  50, no. 20,  11209-11217.
[15] J. P. Hunt,H. Taube (1952)"The photochemical decomposition of hydrogen peroxide. Quantum yields, tracer and fractionation effects", Journal of the American Chemical Society,  74, no. 23,  5999-6002.
 
[16] J. Yoon, Y. Lee,S. Kim (2001)"Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment", Water Science and Technology,  44, no. 5,  15-15.
 
[17] M. M. Arimi, Y. Zhang, S. S. Namango,S.-U. Geißen (2016)"Reuse of recalcitrant-rich anaerobic effluent as dilution water after enhancement of biodegradability by Fenton processes", Journal of environmental management,  168,  10-15.
 
[18] S. Giannakis, M. I. P. López, D. Spuhler, J. A. S. Pérez, P. F. Ibáñez,C. Pulgarin (2016)"Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process", Applied Catalysis B: Environmental,  199,  199-223.
 
[19] Y. Yuan, B. Lai, P. Yang,Y. Zhou (2016)"Treatment of ammunition wastewater by the combined Fe0/air and Fenton process (1stFe0/air-Fenton-2ndFe0/air)", Journal of the Taiwan Institute of Chemical Engineers,  65,  286-294.
 
[20] L. A. G. Mora-Tovar, F. J. R. Valadez, O. Garcia, D. Fernandez,A. I. Zarate, "(Science for Solving Society’s Problems Challenge Grant Winner) In-Situ Electrochemical Generation of the Fenton Reagent for the Treatment of Human Wastewater," in 229th ECS Meeting (May 29-June 2, 2016), 2016: ECS.
 
[21] A. J. Dos Santos, M. D. De Lima, D. R. Da Silva, S. Garcia-Segura,C. A. Martínez-Huitle (2016)"Influence of the water hardness on the performance of electro-Fenton approach: decolorization and mineralization of Eriochrome Black T", Electrochimica Acta,  208,  156-163.
 
[22] M. S. Johnson, E. J. Nilsson, E. A. Svensson,S. Langer (2014)"Gas-phase advanced oxidation for effective, efficient in situ control of pollution", Environmental science & technology,  48, no. 15,  8768-8776.
 
[23] Z. Pengyi, L. Fuyan, Y. Gang, C. Qing,Z. Wanpeng (2003)"A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV", Journal of Photochemistry and Photobiology A: Chemistry,  156, no. 1-3,  189-194.
 
[24] M. S. Kamal, S. A. Razzak,M. M. Hossain (2016)"Catalytic oxidation of volatile organic compounds (VOCs)–A review", Atmospheric Environment,  140,  117-134.
 
[25] H. Huang, H. Huang, Q. Feng, G. Liu, Y. Zhan, M. Wu, H. Lu, Y. Shu,D. Y. Leung (2017)"Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation", Applied Catalysis B: Environmental,  203,  870-878.
 
[26] H. Huang, H. Huang, Y. Zhan, G. Liu, X. Wang, H. Lu, L. Xiao, Q. Feng,D. Y. Leung (2016)"Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism", Applied Catalysis B: Environmental,  186,  62-68.
 
[27] H. Huang, G. Liu, Y. Zhan, Y. Xu, H. Lu, H. Huang, Q. Feng,M. Wu (2017)"Photocatalytic oxidation of gaseous benzene under VUV irradiation over TiO2/zeolites catalysts", Catalysis Today,  281,  649-655.
 
[28] H. Huang, X. Ye, W. Huang, J. Chen, Y. Xu, M. Wu, Q. Shao, Z. Peng, G. Ou,J. Shi (2015)"Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression", Chemical Engineering Journal,  264,  24-31.
 
[29] H. HAZRATI,J. SHYAEGAN (2015)"STUDY OF MEMBRANE BIOREACTOR SYSTEM IN BIOLOGICAL SEPARATION OF VOLATILE ORGANIC COMPONENTS FROM PETROCHEMICAL WASTEWATER".
 
[30] M. Rahimi,M. Soleiman (2013)"Mass Transfer Modeling for Volatile Organic Compounds Absorption in Rotating Packed Beds", Journal of separafion science and engineering,  5,  1-10.
 
[31] J. Cui, S. Liu, H. Xue, X. Wang, Z. Hao, R. Liu, W. Shang, D. Zhao,H. Ding (2021)"Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature", Chinese Journal of Chemical Engineering,  32,  159-167.
 
[32] U. H. Dahiru, F. Saleem, K. Zhang,A. P. Harvey (2021)"Removal of cyclohexane as a toxic pollutant from air using a non-thermal plasma: influence of different parameters", Journal of Environmental Chemical Engineering,  9, no. 1, p. 105023.
 
[33] S. Tian, S. Zhan, Z. Lou, J. Zhu, J. Feng,Y. Xiong (2021)"Electrodeposition synthesis of 3D-NiO1-δ flowers grown on Ni foam monolithic catalysts for efficient catalytic ozonation of VOCs", Journal of Catalysis,  398,  1-13.
 
[34] J. Xu, J. Tang, S. A. Baig, X. Lv,X. Xu (2013)"Enhanced dechlorination of 2, 4-dichlorophenol by Pd/FeFe3O4 nanocomposites", Journal of hazardous materials,  244,  628-636.
 
[35] B. Langlais, D. A. Reckhow,D. R. Brink (2019)Ozone in water treatment: application and engineering. Routledge.
 
[36] F. Lin, Z. Wang, Q. Ma, Y. Yang, R. Whiddon, Y. Zhu,K. Cen (2016)"Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst", Applied Catalysis B: Environmental,  198,  100-111.
[37] H. Wang, Z. Zhuang, C. Sun, N. Zhao, Y. Liu,Z. Wu (2016)"Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process", Journal of Environmental Sciences,  41,  51-58.
 
[38] L.-Z. Deng, A. S. Mujumdar, Z. Pan, S. K. Vidyarthi, J. Xu, M. Zielinska,H.-W. Xiao (2020)"Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review", Critical reviews in food science and nutrition,  60, no. 15,  2481-2508.
 
[39] K. Li, J. Ji, M. He,H. Huang (2020)"Complete oxidation of formaldehyde over a Pd/CeO2 catalyst at room temperature: tunable active oxygen species content by non-thermal plasma activation", Catalysis Science & Technology,  10, no. 18,  6257-6265.
 
[40] D. LI,J. QU (2009)"The progress of catalytic technologies in water purification: A review", Journal of Environmental Sciences,  21, no. 6,  713-719.
 
[41] A. Pintar (2003)"Catalytic processes for the purification of drinking water and industrial effluents", Catalysis today,  77, no. 4,  451-465.
 
[42] J. Ji, Y. Fang, L. He,H. Huang (2019)"Efficient catalytic removal of airborne ozone under ambient conditions over manganese oxides immobilized on carbon nanotubes", Catalysis Science & Technology,  9, no. 15,  4036-4046.
 
[43] Y. Yu, J. Ji, K. Li, H. Huang, R. P. Shrestha, N. T. K. Oanh, E. Winijkul,J. Deng (2020)"Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature", Catalysis Today,  355,  573-579.
 
[44] Y. Yu, S. Liu, J. Ji,H. Huang (2019)"Amorphous MnO2 surviving calcination: an efficient catalyst for ozone decomposition", Catalysis Science & Technology,  9, no. 18,  5090-5099.
 
[45] A. Cabrol, A. Lejeune, R. Lebullenger, A. Denicourt-Nowicki, A. Roucoux, A. Couvert,P.-F. Biard (2021)"Simulation and optimization of the removal of toluene in air by ozonation with a catalytic open-cell foam", Chemical Engineering Research and Design,  168,  453-464.
 
[46] J. Yoon, S. Kim, D. Lee,J. Huh (2000)"Characteristics of p-chlorophenol degradation by Photo Fenton oxidation", Water science and technology,  42, no. 3-4,  219-224.
 
[47] G. E. Box,K. Wilson (1951)"On the experimental attainment of optimum conditions", Journal of the Royal Statistical Society. Series B (Methodological),  13, no. 1,  1-45.
 
[48] G. E. Box,K. B. Wilson (1992)"On the experimental attainment of optimum conditions", Breakthroughs in statistics: methodology and distribution,  270-310.
 
[49] V. Kavitha,K. Palanivelu (2004)"The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol", Chemosphere,  55, no. 9,  1235-1243.