Synthesis of SSZ-13 zeolite membrane and investigation of the effect of lithium, sodium, and potassium ions on the permeance of carbon dioxide, methane, and nitrogen

Document Type : Research paper

Authors

1 MSc. student/Chemical engineering faculty,, Sahand university of technology

2 Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran

Abstract

SSZ-13 zeolite membrane was successfully syntesized by secondary growth method. In this paper, the effect of sodium, potassium and lithium as the extra-framework cations on the membrane performance was investigated for carbon dioxide, methane and nitrogen gases. The synthesized membrane containing sodium cation showed a high carbon dioxide permeance of 3.67 × 10-7 mol.m-2.s-1.Pa-1 and ideal selectivities of CO2/CH4 = 44.6 and CO2/N2 = 11 at 300K and 2bar pressure difference. Then, the sodium caions of the membrane layer were exchanged by both potassium and lithium caions to investugate the permeance of the aforementioned gases at different temperatures and pressures. The effect of temperature was studied by calculation of the activation energies of premeations. The results revealed that the presence of lithium in the membrane layer caused a decrease in the carbon dioxide permeance to 1.13 × 10-7 mol.m-2.s-1.Pa-1. However, that was much more for methane, i.e. from 4.51 × 10-9 mol.m-2.s-1.Pa-1 to 5.30 × 10-11 mol.m-2.s-1.Pa-1, and nitrogen, i.e. from 3.31 × 10-8 mol.m-2.s-1.Pa-1 to 5.30 × 10-9 mol.m-2.s-1.Pa-1. Thus, CO2/CH4 and CO2/N2 selectivities increased from 44 to 97 and 11 to 19, respectively. In the ion-exchanged membrane with potassium, the carbon dioxide permeance decreased sharply to 9.81 × 10-8 mol.m-2.s-1.Pa-1. That resulted in sharp reduction in CO2/CH4 and CO2/N2 selectivities from 44 to 2.7 and 11 to 3.87, respectively. Therefor, potassium cation exchange is not suggested for SSZ-13 membrane.

Keywords


[1] Shang, J., Hanif, A., Li, G., Xiao, G., Liu, J. Z., Xiao, P., & Webley, P. A. (2020). Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification. Industrial & Engineering Chemistry Research, 59(16), 7857-7865.‏
 
[2] Pera-Titus, M. (2014). Porous inorganic membranes for CO2 capture: present and prospects. Chemical reviews, 114(2), 1413-1492.
 
[3] Pachauri, R. K., & Meyer, L. A. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.‏U.S. Department of energy.
 
[4] Kosinov, N., Auffret, C., Gücüyener, C., Szyja, B. M., Gascon, J., Kapteijn, F., & Hensen, E. J. (2014). High flux high-silica SSZ-13 membrane for CO 2 separation. Journal of Materials Chemistry A, 2(32), 13083-13092.‏
 
[5] Du, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO 2 separations. Energy & Environmental Science, 5(6), 7306-7322.‏
 
[6] Anderson, M., Wang, H., & Lin, Y. S. (2012). Inorganic membranes for carbon dioxide and nitrogen separation. Chemical Engineering, 28(2-3), 101-121.‏
 
[7] Zhang, Z., Yao, Z. Z., Xiang, S., & Chen, B. (2014). Perspective of microporous metal–organic frameworks for CO 2 capture and separation. Energy & environmental science, 7(9), 2868-2899.‏
 
[8] Diestel, L., Liu, X. L., Li, Y. S., Yang, W. S., & Caro, J. (2014). Comparative permeation studies on three supported membranes: Pure ZIF-8, pure polymethylphenylsiloxane, and mixed matrix membranes. Microporous and mesoporous materials, 189, 210-215.
 
[9] Caro, J., Noack, M., Kölsch, P., & Schäfer, R. (2000). Zeolite membranes–state of their development and perspective. Microporous and mesoporous materials, 38(1), 3-24.
 
[10] Gascon, J., Kapteijn, F., Zornoza, B., Sebastian, V., Casado, C., & Coronas, J. (2012). Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chemistry of Materials, 24(15), 2829-2844.‏
 
[11] Lai, Z., Bonilla, G., Diaz, I., Nery, J. G., Sujaoti, K., Amat, M. A., Vlachos, D. G. (2003). Microstructural optimization of a zeolite membrane for organic vapor separation. Journal of Membrane Science, 300(5618), 456-460.‏
 
[12] Yue, B., Liu, S., Chai, Y., Wu, G., Guan, N., & Li, L. (2022). Zeolites for separation: Fundamental and application. Journal of Energy Chemistry.‏
 
[13] Kosinov, N., Auffret, C., Sripathi, V. G., Gücüyener, C., Gascon, J., Kapteijn, F., & Hensen, E. J. (2014). Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and mesoporous materials, 197, 268-277.‏
 
[14] Li, S., Martinek, J. G., Falconer, J. L., Noble, R. D., & Gardner, T. Q. (2005). High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & engineering chemistry research, 44(9), 3220-3228.‏
 
[15] Poshusta, J. C., Tuan, V. A., Falconer, J. L., & Noble, R. D. (1998). Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & engineering chemistry research, 37(10), 3924-3929.‏
 
[16] Li, S., Falconer, J. L., & Noble, R. D. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135.‏
[17] Lixiong, Z., Mengdong, J., & Enze, M. (1997). Synthesis of SAPO-34/ceramic composite membranes. In Studies in Surface Science and Catalysis. Elsevier .Vol. 105, pp. 2211-2216.
 
[18] Janocha, A., & Wojtowicz, K. (2018). Studies reducing the H2S from natural gas of using polyimide membrane. Nafta-Gaz, 74.‏
 
[19] Hailu, Y., Tilahun, E., Brhane, A., Resky, H., & Sahu, O. (2019). Ion exchanges process for calcium, magnesium and total hardness from ground water with natural zeolite. Groundwater for Sustainable Development, 8, 457-467.‏
 
[20] Pham, T. D., Liu, Q., & Lobo, R. F. (2013). Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir, 29(2), 832-839.‏
 
[21] Smith, L. J., Eckert, H., & Cheetham, A. K. (2000). Site preferences in the mixed cation zeolite, Li, Na-chabazite: a combined solid-state NMR and neutron diffraction study. Journal of the American Chemical Society, 122(8), 1700-1708.‏
 
[22] Civalleri, B., Ferrari, A. M., Llunell, M., Orlando, R., Merawa, M., & Ugliengo, P. (2003). Cation selectivity in alkali-exchanged chabazite: an ab initio periodic study. Chemistry of materials, 15(21), 3996-4004.‏
 
[23] Ugliengo*, P., Busco, C., Civalleri, B., & Zicovich-Wilson, C. M. (2005). Carbon monoxide adsorption on alkali and proton-exchanged chabazite: an ab-initio periodic study using the CRYSTAL code. Molecular Physics, 103(18), 2559-2571.‏
 
[24] Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y., & Zarghami, N. (2020). Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering: C, 116, 111225.‏
 
[25] Guan, G., Kusakabe, K., & Morooka, S. (2001). Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes. Microporous and mesoporous materials, 50(2-3), 109-120.‏
 
[26] Chew, T. L., Ng, T. Y. S., & Yeong, Y. F. (2019). Zeolite Membranes for CO2 Permeation and Separation. In Membrane Technology for CO2 Sequestration and Separation. CRC Press.‏ pp. 182-201.‏
 
[27] Aydani, A., Brunetti, A., Maghsoudi, H., & Barbieri, G. (2021). CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane. Separation and Purification Technology, 256, 117796.‏
 
[28] Maghsoudi, H., Soltanieh, M., Bozorgzadeh, H., & Mohamadalizadeh, A. (2013). Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption, 19(5), 1045-1053.‏
 
[29] Vlasveld, D. P. N., Groenewold, J. H. E. N., Bersee, H. E. N., & Picken, S. J. (2005). Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer, 46(26), 12567-12576.‏
 
[30] Kalipcilar, H., Gade, S. K., Noble, R. D., & Falconer, J. L. (2002). Synthesis and separation properties of B-ZSM-5 zeolite membranes on monolith supports. Journal of membrane science, 210(1), 113-127.
 
[31] Song, S., Gao, F., Zhang, Y., Li, X., Zhou, M., Wang, B., & Zhou, R. (2019). Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations. Separation and Purification Technology, 209, 946-954.‏