Design, synthesis and study of a new polymer – ion liquid nanofiltration membrane modified with iron / choline chloride nanocomposite to remove water contaminants by experimental design (DOE) method

Document Type : Research paper

Authors

Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.

Abstract

In the present study, polyetersulfone membrane was modified with ferric chloride nanocomposite to improve membrane performance in removing contaminants. Choline chloride ion liquid was used for the first time. In order to determine the properties and morphology, FTIR, contact angle, porosity, BET, TGA, DSC, SEM, transmission flux and membrane clogging analysis were investigated. In order to find the optimal removal conditions, pH and temperature were selected as effective variables and the necessary experiments were designed and performed using Design Expert software and response surface method. The results showed that the best performance of orange 7 dye removal with a membrane of 0.5 wt% nanocomposite and a concentration of 5 μM contaminant at pH 6.7 and a temperature of 33.9 ⁰C, which removes 97.6% of the contaminant. The forecasting model and the results were in good agreement. Water permeability in the modified membranes increased due to changes in the structure and hydrophilicity of the membrane surface, which led to a decrease in clogging and an increase in the amount of return flux compared to the pure membrane.

Keywords


[1] P. Bansal, G. R. Chaudhary, and S. K. Mehta, Comparative study of catalytic activity of ZrO 2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chemical Engineering Journal, 2015. 280: p. 475-485.
 
[2] A. Mohd Azmier, R. Alrozi. "Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. " Chemical Engineering Journal 171. 2 (2011): 511-516.
 
[3] S. U. Jadhavb, S. D. Kalmea, S. P. Govindwar, Biodegradation of Methyl red byGalactomyces geotrichumMTCC 1360. International Biodeterioration & Biodegradation 62 (2008) 135–142.
 
[4]M. H. Vijaykumar, P. A. Vaishampayan, Y. S. Shouche, "Decolourization of naphthalene-containing sulfonated azo dyes by Kerstersia sp. strain VKY1. " Enzyme and Microbial Technology 21. 2 (2007): 212-211.
 
[5] M. Goua, Y. Qua, J. Zhou, F. Ma, L. Tana, Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. Journal of Hazardous Materials171. 1 (2009): 312-319.
 
[6] R. G. Saratalea, G. D. Sarataleb, J. S. Changb, S. P. Govindwar, Decolorization and biodegradation of textile dye Navy blue HER byTrichosporon beigeliiNCIM-3326. Journal of Hazardous Materials 166 (2009) 1421–1428.
 
[7] Ch. Zhao, H. Deng, Y. Li, Zh. Liu, Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. Journal of Hazardous Materials 176. 1 (2010): 002-092.
 
[8] B. Chen, M. Yuan, H. Liu. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. Journal of hazardous materials 100. 1 (2011): 236-222.
 
[9] دبیری مینو. آلودگی محیط زیست. انتشاران اتحاد. شابک: 964560205X. 1392.
 
[10] Z. Xi, B. Chen, Removal of polycyclic arom
 
atic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents. Journal of Environmental Sciences 26. 2 (2014):737-720.
 
[11] مولدر، مار سل، " ا صول بنیانی فناوری غ شایی"، مترجمان: عبدالرضا مقدسی، زهرا رجبی، محسن حسینی، تهران، انتشارات دانشگاهی کیان- اراک، انتشارات دانشگاه اراک، چاپ اول، 1393
 
[12] حیاتی. هایده، دوستی. محمدرضا، "کاربرد فرآیندهای غشایی در تصافیه­ی آب"، ماهنامه فناوری نانو، سال دهم، شماره 11 ، بهمن 90 ، 19 – 15.
[13] مدائنی. سید سیاوش ، " غشا و فرآیندهای غشایی " ، چاپ اول، گروه مهندسی شیمی دانشکده ی فنی و مهندسی دانشگاه رازی کرمانشاه، 1381.
 
[14] C. Bartels, M. Wilf, K. Andes, J. Iong, “Design considerations for wastewater treatment by reverse osmosis”, Water Science and Technology, 2005, Vol. 51, pp. 82-473.
 
[15] X. L. Wang, W. N. Wang, D. X. Wang, “Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions”, Desalination, 2002, Vol. 145, pp. 115-122.
 
[16] H. Strathmann, “Membranes and Membrane Separation Processes”, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
 
[17] Y. H. See Toh, “Green asymmetric molecule manufacture using organic solvent nanofiltration and homogeneous catalyst recycle”, in: Department of Chemical Engineering and Chemical Technology, Imperial College – London, London SW7 2BY, UK, 2005.
 
[18] W. Stumm, “Aquatic colloids as chemical reactants. Surface structure and reactivity”, Colloids and Surfaces, 1993, Vol. 73, pp, 1-18.
 
[19] C. Tang, Q. Fu, C. Criddle, J. Leckie, “Effect of flux (trans membrane pressure) and membrane properties on fouling and rejection of reverse osmosis and Nanofiltration membranes treating perfluoro octane sulfonate containing wastewater”, Environmental Science & Technology, 2007,Vol. 41, pp. 2008-2014.
 
[20] M. Taniguchi, J. Kilduff, G. Belfort, “Modes of natural organic matter fouling during ultrafiltration”, Environmental Science & Technology, 2003, Vol. 37, pp. 1676-1683.
 
[21] E. Vrijenhoek, S. Hong, M. Elimelech,“Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and Nanofiltration membranes”, Journal of Membrane Science, 2001, Vol. 188, pp. 115-128.
 
[22] T. dev Naylor, “Polymer Membranes”, Rapra Technology Limited, 1996, Volume8, No. 5.
 
[23] مداینی. سیاوش، احمد. رحیم پور، "فرآیندهای غشایی صنعتی"، کرمانشاه، انتشارات چشمه هنر و دانش- انتشارات دانشگاه رازی، چاپ اول، 1384.
 
[24] رحیم پور. احمد، "ساخت غشاء اولترافیلتراسیون بر پایه پلی­سولفون و پلی­اترسولفون برای تغلیظ شیر" پایان نامه کارشناسی ارشد مهندسی شیمی، دانشگاه رازی کرمانشاه، اسفند 87.
[25] M. Y. Lone, p. Russel, P. G. Luiz, “A New generation of trak etched membrane for microfiltration and nanofiltration. Part I. preparation and characterization”, Journal of Membrane Science, 1996, Vol. 118, pp. 239-245.
 
[26] R. E. Kesting, “Synthetic polymeric membranes”, Wiley, NewYork, 1985.
 
[27] Ch. Zhao, J. Xue, F. Ran, Sh. Sun, Modification of polyethersulfone membranes – A review of methods. Progress in Materials Science 58 (2013) 76–150.
 
[28] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, and X. Deng, "Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties," Procedia Engineering, vol. 27, pp. 632-637, 2012.
 
[29] H. Iida, K. Takayanagi, T. Nakanishi, and T. Osaka, "Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis," Journal of Colloid and Interface Science, vol. 314, no. 1, pp. 274-280, 2007.
 
[30] Y. Huang, Y. Wang, Q. Pan, Y. Wang, X. Ding, K. Xu, N. Li, Q. Wen, Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Analytica Chimica Acta 877 (2015) 90–99.
 
[31] ف، حقیقی،ش، کریمی، ز،سجادی، ز، طالب پور، آشنایی با نرم­افزارهایی کاربردی درعلم شیمی، هشتمین سمینار آموزش شیمی ایران، دانشکده شیمی دانشگاه سمنان، (1392)، 19-1.
 
[32] R. E. KIRK, Experimental Design. Handbook of Psychology, Second Edition, edited by Irving B. Weiner. Copyright © 2013 John Wiley & Sons, Inc.
 
[33] مهدی بشیری ، فاطمه فتوحی. کتاب طراحی و تحلیل آزمایش ها با تاکید بر دو نرم افزار DESIGN EXPERT و MINITAB. انتشارات دانشگاه شاهد. 1389.
 
[34] A. R, Abasi, K, Akbari, A , Morsali, Ultrasonic sonochemistry, 19, (2012), 846-852.
 
[35] Y. Huang, Y. Wang, Q. Pan, Y. Wang, X. Ding, K. Xu, N. Li, Q. Wen, Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein. Analytica Chimica Acta 877 (2015) 90–99.
 
[36] S. H Xia, M, Ni, Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter remova Journal of Membrane Science 473 (2015) 54–62.
 
[37] ن،قائمی، پ، صفری، بررسی عملکرد غشاء لایه نازک نانوفیلتراسیون به منظور حذف رنگ از آب با استفاده از نرم افزار مینی­تب، (1397)، 3 – 1.
 
[38] N. Fu, L. Li, K. Liu, Ch. K. Kim, J. Li, T. Zhu, J. Lia, B. Tanga, A choline chloride-acrylic acid deep eutectic solvent polymer based on Fe3O4 particles and MoS2 sheets (poly(ChCl-AA DES)@Fe3O4@MoS2) with specific recognition and good antibacterial properties for β-lactoglobulin in milk. Journal of Talanta 197 (2019) 567–577.
 
[39] P. Qu, H. Tang, Y. Gao, Li. Zhang, S. Wang, Polyethersulfone Composite Membrane Blended with Cellulose Fibrils. BioResources, 2010. 5(4): p. 2323-2336.
 
[40] N. Nasrollahi, V. Vatanpour, S. Aber, N. Mohammad Mahmoodi, Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Separation and Purification Technology (2017). 10. 034.
 
[41] Q. Shi, Y. Su, Sh. Zhu, Ch. Li, Y. Zhao, Zh. Jiang, A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. Journal of Membrane Science 303 (2007) 204–212.
 
[42] Y. Duan, Ch. B. Sangani, R. K. Ameta, Thermal, SEM, AFM, BET and biological analysis of newly synthesized Fe2+/Fe3+ based MOIFs. Journal of Molecular Liquids 295 (2019) 111709.
 
[43] V. B. Mohan, K. Jayaraman, D. Bhattacharyya, Brunauer–Emmett–Teller (BET) Specific Surface Area Analysis of Different Graphene Materials: A Comparison to their Structural Regularity and Electrical Properties. Solid State Communications. (2020). 114004.
 
[44] G. A. Biggs, L. F. Phillips, BET analysis of thermal accommodation coefficients obtained via measurements of the Onsager heat of transport. Chemical Physics Letters 452 (2008) 84–88.
 
[45] M. R. Shirzad Kebria, M. Jahanshahi, A. Rahimpour, SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Journal of Desalination 367 (2015) 255–264.
 
[46] P. Mobarakabad, R. Moghadassi, S. M. Hosseini, Fabrication and characterization of poly(phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination. Journal of Desalination 365 (2015) 227–233.
 
[47] S. M. Mousavi, E. Saljoughi, Z. Ghasemipour, S. A. Hosseini, Preparation and Characterization of Modified Polysulfone Membranes With High Hydrophilic Property Using Variation in Coagulation Bath Temperature and Addition of Surfactant. Society of Plastics Engineers. (2012). 23179.
 
[48] Y. Mansourpanah, S. S. Madaeni, A. Rahimpour, M. Adeli, M. Y. Hashemi, M. R. Moradian, Journal of Desalination 277 (2011) 171–177.
 
[49] M. BELMARES, M. BLANCO, W. A. GODDARD, R. B. ROSS, Hildebrand and Hansen Solubility Parameters from Molecular Dynamics with Applications to Electronic Nose Polymer Sensors. Published online in Wiley InterScience (2004). 200­-98.
 
[50] T. A. Makhethaa, R. M. Moutloali, Antifouling properties of Cu(tpa)@GO/PES composite membranes and selective dye rejection. Journal of Membrane Science 554 (2018) 195–210.
 
[51] J. Li, Zh. Xu, Hu. Yang, Li. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science 255 (2009) 4725–4732.
 
[52] P. A. Vinodhini, K. Sangeetha, T. Gomathi, P. N. Sudha, J. Venkatesan, S. Anil, FTIR, XRD and DSC Studies of Nanochitosan, Cellulose acetate and Polyethylene glycol Blend Ultrafiltration Membranes. Journal of Biological Macromolecules. (2017). 03. 122.
 
[53] M. Majewsky, H. Bitter, E. Eiche, H. Horn, Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Science of the Total Environment 568 (2016) 507–511.
 
[54] S. Livazovic, Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia. June 2016.
 
[55] D. Li, X. Sun, Ch. Gao, M. Dong, Improved water flux and antifouling properties of cardo poly(aryl ether ketone) ultrafiltration membrane by novel sulfobetaine polyimides additive. Separation and Purification Technology. (2020). 117144.
 
[56] G. Moradi, S. Zinadini, L. Rajabi, Development of nanofiltration PES membranes incorporated with hydrophilic para hydroxybenzoate alumoxane filler for high flux and antifouling property. Chemical Engineering Research and Design. (2020). 04. 004.
 
[57] M. Sivakumar, D. Raju Mohan, R. Rangarajan, “Studies on cellulose acetatepolysulfone ultrafiltration membranes II. Effect of additive concentration”, Journal of Membrane Science , Vol. 268, pp. 208–219.
 
[58] V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, “Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/ Polyethersulfone nanocomposite” , Journal of Membrane Science, 2011, Vol. 375, pp. 284-294.