Preparation of enhanced nanofiltration membranes containing Cellulose acetate butyrate/Mxene nanoparticles for separation of salt and dye from water

Document Type : Research paper

Authors

Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this study, for the first time, nanofiltration membranes containing cellulose acetate butyrate polymer and MXene nanoparticles were prepared and used to remove dye and salt from water. MXene nanoparticles were synthesized from Ti3AlC2 precursor and the existence of a layered structure as well as the formation of OH-functional group in them was proved. Then, Cellulose acetate butyrate nanofiltration membranes were prepared from MXene nanoparticles at concentrations of 0 to 4 wt.% and various characterizations were performed on the mentioned prepared membranes. The results showed that increase in concentration of MXene nanoparticles results in formation of membranes with higher porosity, hydrophilicity, pure water flux and flux recovery ratio. Also, with the addition of MXene to the polymer and increase in its concentration up to 3 wt.%, mechanical properties, including tensile strength, elastic modulus and elongation at breakpoint increased, while further increase in nanoparticle concentration decreased these properties. In all membranes up to 3 wt.% of nanoparticles, the rejection of methylene blue and methyl orange dyes as well as rejection of divalent salt were above 90%.

Keywords


[1] T. Mohammadi, and E. Saljoughi (2009) “Effect of production conditions on morphology and permeability of asymmetric cellulose acetate membranes”. Desalination. 243. 1-7.
 
]2[ علی حسین زاده بهرمند (1395) "ساخت غشای پلی بوتیلن ساکسینات/سلولز استات/دکستران". پایان نامه کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد
 
[3] J.M.K. Timmer (2001) “Properties of nanofiltration membranes: model development and industrial application”. Technische Universiteit Eindhoven.
 
[4] Y.A.J. Al-Hamadani, B-M. Jun, M. Yoon, N. Taheri-Qazvini, S.A. Snyder, M. Jang, J. Heo, and Y. Yoon (2020) “Applications of MXene-based membranes in water purification: A review” Chemosphere. 254. 126821.
 
[5] B. Anasori, MR. Lukatskaya, and Y. Gogotsi (2017) “2D metal carbides and nitrides (MXenes) for energy storage”. Nature Reviews Materials. 2(2). 1-17.
 
[6] C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, and Y. Gogotsi (2015) “Charge-and size-selective ion sieving through Ti3C2T x MXene membranes”. The journal of physical chemistry letters. 6(20). 4026-4031.
 
[7] X. Wu, L. Hao, J. Zhang, X. Zhang, J. Wang, and  J. Liu (2016) “Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system”.  Journal of membrane science. 515. 175-188.
 
[8] R. Han, X. Ma, Y. Xie, D. Teng, and S. Zhang (2017) “Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux”. Rsc Advances7(89). 56204-56210.
 
[9] A. Dashtbozorg, E. Saljoughi, S.M. Mousavi, S. Kiani (2022) “High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions” Desalination.527. 115600.
 
[10] W. Li, X. Tian, X. Li, J. Liu, C. Li, X. Feng, and Z.Z. Yu (2022) “An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency” Journal of Colloid and Interface Science. 606. 748-757.
 
[11] Q. Xue, and K. Zhang (2021) “MXene nanocomposite nanofiltration membrane for low carbon and long-lasting desalination”. Journal of Membrane Science. 640. 119808.
 
[12] L. Zhang, K. Wei, G. Zeng, Q. Lin, X. Liu, Y. Chen, and A. Sengupta (2021) “High-efficient oil/water separation membrane based on MXene nanosheets by co-incorporation of APTES and amine functionalized carbon nanotubes”. Journal of Environmental Chemical Engineering. 9(6). 106658.
 
[13] R.P. Pandey, P.A. Rasheed, T. Gomez, R.S. Azam, and K.A. Mahmoud (2020) “A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate ” Journal of Membrane Science. 607. 118139.
 
[14] R. Alfahel, R.S. Azzam, M. Hafiz, A.H. Hawari, R.P. Pandey, K.A. Mahmoud, and A.A. Elzatahry (2020) “Fabrication of fouling resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application ”. Journal of Water Process Engineering. 38. 101551.
 
[15] M.H. Abbasi-Geravand, E. Saljoughi, S.M. Mousavi, and S.Kiani (2021) “Biodegradable polycaprolactone/MXene nanocomposite nanofiltration membranes for the treatment of dye solutions ”. Journal of the Taiwan Institute of Chemical Engineers.128.124-139.
 
[16] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, and M.W.Barsoum (2012) “Two-dimensional transition metal carbides”. ACS nano. 6(2). 1322-1331.
 
]17[ احسان سلجوقی، وحیده غفاریان و احمد اخوت (1392) "فناوری ساخت، اصلاح و ارزیابی غشاهای پلیمری"، سازمان انتشارات جهاد دانشگاهی
 
[18] N.N. Li, A.G. Fane, W.W. Ho, and T. Matsuura (2011)  Advanced membrane technology and applications. John Wiley & Sons Publication.
 
[19] M. Han, X. Yin, H. Wu, Z. Hou, C. Song, X. Li, and L. Cheng  (2016) “Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band”. ACS applied materials & interfaces. 8(32). 21011-21019.
 
[20] Y. Gogotsi (2015) “Transition metal carbides go 2D”. Nature materials. 14(11). 1079-1080.
 
[21] R. Kefirov, E. Ivanova, K. Hadjiivanov, S. Dzwigaj, and M. Che (2008) “FTIR characterization of Fe 3+–OH groups in Fe–H–BEA zeolite: Interaction with CO and NO”. Catalysis letters. 125(3). 209-214.
 
[22] R. Rezaee, S. Nasseri, A.H. Mahvi, R. Nabizadeh, S.A. Mousavi, A. Rashidi, and S. Nazmara. (2015) “Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water”. Journal of Environmental Health Science and Engineering. 13(1). 1-11.
 
[23] M.M. Pendergast, and E. M.Hoek (2011) “A review of water treatment membrane nanotechnologies”. Energy & Environmental Science. 4(6). 1946-1971.
 
[24] A. Rahimpour, and S.S.Madaeni (2007) “Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: preparation, morphology, performance and antifouling properties”. Journal of Membrane Science. 305(1-2). 299-312.
 
[25] X.H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, and S. Du (2015) “Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes”. EPL (Europhysics Letters). 111(2). 26007.
 
[26] E.M. Abdelrazek, I.S. Elashmawi, and S. Labeeb (2010) “Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films”. Physica B: Condensed Matter. 405(8). 2021-2027.
 
[27] S. Cao, Y. Shi, and G. Chen (1998) “Blend of chitosan acetate salt with poly (N-vinyl-2-pyrrolidone): Interaction between chain-chain” Polymer Bulletin. 41(5). 553-559.
 
[28] D.A. Musale, and A. Kumar (2000) “Effects of surface crosslinking on sieving characteristics of chitosan/poly (acrylonitrile) composite nanofiltration membranes”. Separation and purification technology. 21(1-2). 27-37.
 
[29] A.R. Fajardo, L.C. Lopes, A.F. Rubira, and E.C.Muniz (2012) “Development and application of chitosan/poly (vinyl alcohol) films for removal and recovery of Pb (II)”. Chemical Engineering Journal. 183. 253-260.
 
[30] G.Z. Kyzas, and N.K. Lazaridis (2009) “Reactive and basic dyes removal by sorption onto chitosan derivatives”. Journal of Colloid and Interface Science. 331(1). 32-39..
 
[31] Y.Q. Wang, T. Wang, Y.L. Su, F.B. Peng, H. Wu, and Y.Z. Jiang (2005) “Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly (ether sulfone) ultrafiltration membranes by blending with pluronic F127”. Langmuir. 21(25). 11856-11862.
 
[32] R.N. Maalige, K. Aruchamy, A. Mahto, V. Sharma, D. Deepika, D. Mondal, and S.K. Nataraj (2019) “Low operating pressure nanofiltration membrane with functionalized natural nanoclay as antifouling and flux promoting agent”. Chemical Engineering Journal. 358. 821–830.
 
[33] S. Kamari, and A. Shahbazi (2020) “Biocompatible Fe3O4@ SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests”. Chemosphere. 243. 125282.
[34] S. Casanova, T.Y. Liu, Y.M.J. Chew, A. Livingston, and D. Mattia (2020) “High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration”. Journal of Membrane Science. 597. 117749
 
[35] L. Chen, J.H. Moon, X. Ma, L. Zhang, Q. Chen, L. Chen, R. Peng, P. Si, J. Feng, Y. Li, J. Lou, and L. Ci (2018) “High performance graphene oxide nanofiltration membrane prepared by electrospraying for wastewater purification”. Carbon 130. 487–494.
 
[36] Y. He, Y.P. Tang, D. Ma, and T.S. Chung (2017) “UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal”. Journal of Membrane Science. 541, 262-270.
 
[37] F. Xiao, B. Wang, X. Hu, S. Nair, and Y. Chen (2018) “Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration”. Journal of the Taiwan Institute of Chemical Engineers. 83. 159-167.
 
[38] M. Peydayesh, T. Mohammadi, and O. Bakhtiari (2019) “Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT”. Journal of industrial and engineering chemistry. 69. 127-140.
 
[39] H. Li, W.Shi, Y.Su, H. Zhang, X. Qin (2017) “Preparation and characterization of carboxylated multiwalled carbon nanotube/polyamide composite nanofiltration membranes with improved performance”. Journal of Applied Polymer Science. 134(36). 45268.