Gas separation using mixed matrix membranes containing functionalized silica nanoparticles

Document Type : Research paper

Authors

1 Department of Analytical Chemistry, Faculty of Engineering, Damghan Branch, Islamic Azad University

2 Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)

Abstract

The main goal of this study is to investigate the influence of functionalization of silica nanoparticles on the structural properties and gas separation performance of the poly (ether-block-amide) based mixed matrix membranes containing silica nanoparticles. For this purpose, first silica nanoparticles were modified by carboxylic functional groups and used for the preparation of mixed matrix membranes. The prepared membranes were analyzed using the XRD, DSC, FTIR, SEM and gas permeation tests. The results showed that the chemical modification of silica nanoparticles and the incorporating of carboxyl groups on its surface had a strong interaction with the polymer matrix and improved the filler distribution in the membrane matrix. It was observed that by loading 4%wt of silica nanoparticles functionalized with carboxyl groups in the polymer matrix increases the gas permeability at different pressures. The membranes containing 4%wt modified silica nanoparticles had the permeability of CO2, O2 and N2 equal 43.1, 2.8 and 0.42 Barrer, respectively, and the selectivity of O2/N2 (6.71) and CO2/N2 (103.3) at the pressure of 3 bar.

Keywords


[1]  J. S. P. Tushar, B. Khaire and A. S. Kemse (2018) “District Wise CO2 Emission for Maharashtra State Using AADMI Approach”, International Journal of Scientific Research in Science, Engineering and Technology, 5.
 
[2]  M. N. Anwar, A. Fayyaz, N.F. Sohail, M.F. Khokhar, M. Baqar, A. Yasar, K. Rasool, A. Nazir, M.U.F. Raja, M. Rehan, M. Aghbashlo, M. Tabatabaei and A.S. Nizami (2020) “CO2 utilization: Turning greenhouse gas into fuels and valuable products”, Journal of Environmental Management, 260.
 
[3]  A. Mikhaylov, N. Moiseev, K. Aleshin, and T. Burkhardt (2020) “Global climate change and greenhouse effect Machine Learning Methods and Sustainable Development: Multilayer Metal-Oxides" , researchgate.net, 7, 4.
 
[4]  H. Ritchie and M. Roser (2017) “CO₂ and Greenhouse Gas Emissions - Our World in Data”, OurWorldInData.org.
 
[5]  M. Chawla, H. Saulat, M. Masood Khan, , M. Mahmood Khan, S. Rafiq, L. Cheng, T. Iqbal, M. I. Rasheed, M. Z. Farooq, M. Saeed, N. M. Ahmad , M. B. Khan Niazi, S. Saqib, F. Jamil, A. Mukhtar and N. Muhammad (2020) “Membranes for CO2 /CH4 and CO2/N2 Gas Separation” , Chemical Engineering and Technology, 43, 2, 184–199.
 
[6]  N. F. Himma, A. K. Wardani, N. Prasetya, P. T. P. Aryanti, and I. G. Wenten (2019) “Recent progress and challenges in membrane-based O2/N2 separation”, Reviews in Chemical Engineering, 35, 5, 591–625.
 
[7]  S. Raveshiyan, S. S. Hosseini, and J. Karimi-Sabet (2020) “Intensification of O2/N2 separation by novel magnetically aligned carbonyl iron powders /polysulfone magnetic mixed matrix membranes”, Chemical Engineering and Processing - Process Intensification, 150.
 
[8]  S. A. S. C. Samarasinghe, C. Y. Chuah, H. E. Karahan, G. S. Sethunga, and T. H. Bae (2020) “Enhanced O2/N2 separation of mixed-matrix membrane filled with pluronic-compatibilized cobalt phthalocyanine particles”, Membranes (Basel),10, 4.
 
[9]  P. Natarajan, B. Sasikumar, S. Elakkiya , G. Arthanareeswaran , A. F. Ismail , W. Youravong and E. Yuliwati (2021) “Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation” , Journal of Natural Gas Science and Engineering, 86, 103720.
 
[10] I. G. B. N. Makertihartha, K. S. Kencana, T. R. Dwiputra, K. Khoiruddin, R. R. Mukti, and I. G. Wenten (2020) “Silica supported SAPO-34 membranes for CO2/N2 separation” , Microporous and Mesoporous Materials, 298, 110068.
 
[11] W. J. Koros (2002) “Gas separation membranes: Needs for combined materials science and processing approaches”, Macromolecular Symposia, 188, 1, 13–22.
 
[12] K. Zarshenas, A. Raisi, and A. Aroujalian (2016) “Mixed matrix membrane of nano-zeolite NaX / poly (ether-block-amide) for gas separation applications” , Journal of Membrane Science, 510, 270–283.
 
[13] S. M. Rassoulinejad-Mousavi, J. Azamat, A. Khataee and Y. Zhang (2020) “Molecular dynamics simulation of water purification using zeolite MFI nanosheets” , Separation and Purification Technology, 234, 116080.
 
[14] A. Marjani, A. T. Nakhjiri, M. Adimi, H. F. Jirandehi, and S. Shirazian (2020) “Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment”, Scientific Reports, 10, 1, 1–11.
 
[15] S.A. Habibiannejad, A. Aroujalian and A. Raisi (2016) “Pebax-1657 mixed matrix membrane containing surface modified multi-walled carbon nanotubes for gas separation”, RSC Advances, 6, 83, 79563–79577.
 
[16] N. Gholamipour, M. Sadeghi and M. Shafiei (2019) “Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefin-Paraffin Separation” , Chemical Engineering and Technology, 42, 11, 2292–2301.
 
[17] A. S. Wiryoatmojo, H. A. Mannan, R. Nasir, H. Mukhtar, D. F. Mohshim, A. Abdulrahman, Z. Man (2019) “Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation performance of mixed matrix membranes” , Polymer Testing, 80, 106152.
 
[18] A. H. Saeedi Dehaghani and V. Pirouzfar(2017) “Preparation of High-Performance Membranes Derived from Poly(4-methyl-1-pentene)/Zinc Oxide Particles”, Chemical Engineering & Technology, 40, 9, 1693–1701.
 
[19] F. Karamouz, H. Maghsoudi and R. Yegani (2018) “Synthesis of High‐Performance Pebax®‐1074/DD3R Mixed‐Matrix Membranes for CO2/CH4 Separation” , Chemical Engineering & Technology, 41, 9,. 1767–1775.
 
[20] M. Mubashir, Y. Yin fong, C. T. Leng, L. K. Keong and N. Jusoh (2020) “Study on the effect of process parameters on CO2/CH4 binary gas separation performance over NH2-MIL-53(Al)/cellulose acetate hollow fiber mixed matrix membrane” , Polymer Testing, 81, 106223.
 
[21] M. Mozafari, R. Abedini and A. Rahimpour (2018) “Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4”, Journal of Materials Chemistry A, 6, 26, 12380–12392.
 
[22] A. Fernández-Barquín, C. Casado-Coterillo, M. Palomino, S. Valencia and A. Irabien (2015)  “LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2 Separation”, Chemical Engineering & Technology, 38, 4, 658–666.
 
[23] S. Sorribas, B. Comesaña-Gándara, A. E. Lozano, B. Zornoza, C. Téllez and J. Coronas (2015) “Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO2/CH4 gas separation”, RSC Advances, 5, 124, 102392–102398.
 
[24] M. S. Maleh and A. Raisi (2019) “CO2-philic moderate selective layer mixed matrix membranes containing surface functionalized NaX towards highly-efficient CO2 capture”, RSC Advances, 9, 27, 15542–15553.
 
[25] X. Zou and G. Zhu (2019) Microporous Materials for Separation Membranes. Wiley.
 
[26] S. S. Swain, L. Unnikrishnan, S. Mohanty and S. K. Nayak (2017) “Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures”, Korean Journal of Chemical Engineering, 34, 8, 2119–2134.
 
[27] A. S. Embaye, L. Martínez-Izquierdo, M. Malankowska, C. Téllez, and J. Coronas (2021) “Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications”, Energy and Fuels, 35. American Chemical Society, 17085–17102.
 
[28] A. Ghadimi, T. Mohammadi and N. Kasiri (2015) “Gas permeation, sorption and diffusion through PEBA/SiO2 nanocomposite membranes (chemical surface modification of nanoparticles)”, International Journal of Hydrogen Energy, 40, 31, 9723–9732.
 
[29] Y. Dai, X.Ruan, Z.Yan, K.Yang, M.Yu, H.Li, W.Zhao and G. He (2016) “Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture”, Separation and Purification Technology, 166, 171–180.
 
[30] H. R. Amedi and M. Aghajani (2017) “Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application”, Microporous and Mesoporous Materials, 247, 124–135.
 
[31] M. Salehi Maleh and A. Raisi (2019) “Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications”, Chemical Engineering Research and Design, 147, 545–560.
 
[32] P. G. Ingole, M. I. Baig, W. K. Choi and H. K. Lee (2016) “Synthesis and characterization of polyamide/polyester thin-film nanocomposite membranes achieved by functionalized TiO2 nanoparticles for water vapor separation”, Journal of Materials Chemistry A, 4, 15, 5592–5604.
 
[33] I. Sadeghi, A. Aroujalian, A. Raisi, B. Dabir and M. Fathizadeh (2013) “Surface modification of polyethersulfone ultrafiltration membranes by corona air plasma for separation of oil/water emulsions”, Journal of Membrane Science, 430, 24–36.
 
[34] R. S. Murali, K. P. Kumar, A. F. Ismail and S. Sridhar (2014) “Nanosilica and H-Mordenite incorporated Poly(ether-block-amide)-1657 membranes for gaseous separations”, Microporous and Mesoporous Materials, 197, 291–298.
 
[35] T. Khosravi and M. Omidkhah (2017) “Preparation of CO2 selective composite membranes using Pebax/CuBTC/PEG-ran-PPG ternary system”, Journal of Energy Chemistry, 26, 3, 530–539.
 
[36] J. H. Kim and Y. M. Lee (2001) “Gas permeation properties of poly (amide-6-b-ethylene oxide) silica hybrid membranes”, Journal of Membrane Science, 193, 2, 209–225.
 
[37] S. H. Hosseini, H. S. G., B. Kiani, M. M. Pour and M. Ghanbari (2014) “Examination of Iran’s crude oil production peak and evaluating the consequences: a system dynamics approach”, Energy Exploration & Exploitation, 32, 673–690.
 
[38] S. Azarshin, J. Moghadasi and Z. A Aboosadi (2017) “Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs”, Energy Exploration & Exploitation, 35, 6, 685–697.
 
[39] H. Rabiee, S. Meshkat Alsadat, M. Soltanieh, S. A. Mousavi and A. Ghadimi (2015) “Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation”, Journal of Industrial and Engineering Chemistry, 27, 223–239.
 
[40] A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari (2017) “Ionic liquid-modified Pebax® 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4 , N2 and H2,” Journal of Membrane Science, 524, 652–662.
 
[41] S. Matavos-Aramyan, M. H. Jazebizadeh, and S. Babaei (2020) “Investigating CO2, O2 and N2 permeation properties of two new types of nanocomposite membranes: Polyurethane/silica and polyesterurethane/silica”, Nano-Structures and Nano-Objects, 21, 100414.
 
[42] C. C. Hu (2020) “Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation”, Journal of Membrane Science, 595.
 
[43] A. Dehghani Kiadehi, A. Rahimpour, M. Jahanshahi, and A. A. Ghoreyshi (2015) “Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation”, Journal of Industrial and Engineering Chemistry, 22, 199–207.
 
[44] R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar (2014) “Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations”, Separation and Purification Technology, 129, 1–8.