Simulation and optimization of sulfur separation unit in Ilam refinery by response surface methodology

Document Type : Research paper

Authors

Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

Abstract

The purpose of this research is to optimize the sulfur separation unit to increase sulfur production and simultaneously reduce the production of carbon dioxide based on the information of the unit for the separation of sulfur in the Ilam refinery. The input variables of the sulfur separation unit are the feed flow rate, airflow, furnace temperature, furnace pressure, first catalytic reactor temperature and the first catalytic reactor pressure. The mathematical model of the process was obtained using the surface response method (RSM) and the accuracy of the model was analyzed by analysis of variance. Finally, the operating conditions of the sulfur separation process were performed with numerical optimization method. The results showed that the most effective parameters are furnace temperature, air flow rate, and feed rate. The optimum points for the furnace temperature of 1039 °C, the airflow rate 469.38 kmol/h, and feed flow rate 1110.38 kmol/h were obtained which increased the sulfur production from 30% to 89% and decreased the production of dioxide Carbon from 55% to 8%.

Keywords

Main Subjects


]1[- ح.کریم، الف. عامری (1394) "بررسی اثرات تغلیظ گاز اسیدی در واحد بازیافت گوگرد با رویکرد کاهش مصرف انرژی"، پنجمین کنفرانس بین­المللی رویکردهای نوین در نگهداشت انرژی، تهران، ایران.
 ##
]2[- ع.گرمرودی اصیل، ش.میرزایی (1383) "تعدیل ساختار واحد تصفیه گاز جهت غنی­سازی جریان گاز اسیدی ورودی به واحد بازیافت گوگرد پالایشگاه خانگیران"، اولین کنفرانس ملی فرآیندهای گاز و پتروشیمی، دانشگاه فردوسی مشهد، ایران.
 ##
]3[- ر. حجازی (1396) "جستاری دینی بر پیمان­های محیط زیستی بین­المللی مطالعه موردی: پیمان کیوتو"، فصلنامه حقوقی محیط زیست، سال دوم، شماره یک، 30-37.
 ##
 [4]- G.P. Rangaiah. (Editor). (2009) "Multi-objective optimization: techniques and applications in chemical engineering", World Scientific Inc, 1.
 ##
[5]- W.D.Monnery, W.Y.Svrcek., L.ABehie (1993) "Modeling the modified Claus process re- action furnace and the implications on plant design and recovery", Can. J. Chem. Eng., 71(5), 711–724.
 ##
[6]- F.Manenti, D.Papasidero,  A.Frassoldati  , G.Bozzano, S. Pierucci, E. Ranzi (2013) "Multi-scale modeling of Claus thermal furnace and waste heat boiler using detailed kinetics", Comp. Chem. Eng., 59, 219–225.
 ##
[7]- F.Manenti, D.Papasidero, G.Bozzano, E.Ranzi (2014) "Model-based optimization of sulfur recovery units", Comp. Chem. Eng., 66, 244–51.
 ##
[8]- L.V.Nasato, K Karan, A.K Mehrotra, L.A.Behie. (2016) "Modeling reaction quench times in the waste heat boiler of a Claus plant", Ind Eng Chem Res, 33(1), 7–13.
 ##
[9]-. J.De Deken, E. Devos, G. Froment (1982) "Steam Reforming of Natural Gas: Intrinsic Kinetics, Diffusional Influences, and Reactor Design", 181-197.
 ##
[10] - J.Pooralhossini, M.Ghaedi, M.A. Zanjanchi, A. Asfaram (2017) "The choice of ultrasound assisted extraction coupled with spectro-photometric for rapid determination of gallic acid in water samples: central composite design for optimization of process variables", Ultrason. Sonochemistry, 34, 692-699.
##
[11] - I. Salisu, R. Abhijeet (2016)."Kinetic Simulation of Acid Gas (H2S and CO2) Destruction for Simultaneous Syngas and Sulfur Recovery", Ind. Eng. Chem. Res., 55 (24), 6743–6752.
 ##
 [12]- H.Kazempour, F. Pourfayaz, M.Mehrpooya (2017) "Modeling and multi-optimization of thermal section of Claus process based on kinetic model", Journal of Natural Gas Science and Engineering, 38, 235-244.
 ##
]13[- ف. شکوه علایی، ع. حقیقی اصل (1397) ، "مدلسازی سینتیکی راکتورهای کاتالیستی فرآیند کلاوس واحد بازیافت گوگرد پالایشگاه گاز ایلام ، کنگره ایده­های نوین پژوهشی در علوم مهندسی و تکنولوژی، برق و کامپیوتر ، ساری، ایران.
 ##
]14[- م.ح شفیعی، الف. اکبری داهویی، م. صفا میرزایی  (1397)، "مدلسازی سینتیکی راکتورهای کاتالیستی فرآیند کلاوس واحد بازیافت گوگرد پالایشگاه گاز ایلام" ، کنفرانس بین­المللی نوآوری و تحقیق در علوم مهندسی ، گرجستان- تفلیس
 ##
]15[- الف. کوهستانیان، ج.صادقی ، د. محبی­کلهری (1396) "شبیه­سازی و طراحی فرآیندهای نفت، گاز و شیمیایی با Aspen Plus"، چاپ اول، سازمان انتشارات جهاد دانشگاهی تهران.
 ##
]16[- س.زارعی محمودآبادی ، ح.گنجی ، م.سعدی ، م.رشیدزاده (1396) ، "مروری بر مدلسازی سینتکی و بهینه­سازی کوره واکنش واحد بازیافت گوگرد"، پژوهش نفت، پژوهشگاه نفت تهران، ایران، 94، 204-213.
 ##
[17]- M.Pahlavan, M.A. Fanaei (2015) "Modeling and Simulation of Claus of Mashhad Unit Reaction Furnace", Chemical Engineering Department, Faculty of Engineering, Ferdowsi University, Mashhad, Iran, August 19, 5( 1), 42-52.
 ##
[18]- W.D.Monnery, K.A.Hawboldt, A.Pollock, W.Y.Svrcek (2000) "New experimental data and kinetic rate expression for Claus reaction", Chem. Eng. Sci., 55, 5141-5148. 
 ##
[19]- K.Karan, and L.A Behie (2004) "CS2 Formation in the Claus Reaction Furnace Kinetic Study of Methane-Sulfur and Methane-Hydrogen Sulfide Reactions", Ind. Eng. Chem. 43, 13, 3304-3313.
 ##
[20]-  Sh.Tong, I. G. Dalla Lana., K. T.Chuang   (1997) "Effect of Catalyst Shape on the Hydrolysis of COS and CS2 in a Simulated Claus Convertor", Ind. Eng. Chem Res, 36, 4087-4093.
 ##
 [21]- E.M.Besher, A.Meisen (1990) "Low-temperature Fluidized-bed Claus reactor performance", Chem.  Eng. Sci., 45, 10, 3035-3045.
 ##
[22]- B.Manohar (2014) "Optimization of supercritical carbon dioxide extraction of phenolic compounds from mango ginger rhizome (Curcuma Amada Roxb.) Using response surface methodology", Biomed. Biotechnol. 2, 14-19.
 ##
[23]- D. Krishnaiah, A.Bono, R. Sarbatly, R.Nithyanandam, S. Anisuzzaman (2015) "Optimization of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology", J. King Saud Univ. Eng. Sci., 27, 26-36.
 ##
[24]- D.O.Aksoy, E. Sagol (2016) "Application of central composite design method to coal flotation: modeling, optimization and verification", Fuel 183, 609-616.
 ##
[25]- P.Naik, P.S.R.Reddy, V. Misra (2005) "Interpretation of interaction effects and optimization of reagent dosage for fine coal flotation", Int. J. Mineral Processing, 75, 83-90.
 ##
[26]- S.L.C. Ferreira, R.E. Bruns, E.G.P.da Silva  , W.N.L. dos Santos, C.M. Quintella., J.M.David, J.B.de Andrade  , M.C.Breitkreitz, , I.C.S.F.Jardim., B.B. Neto (2007)" Statistical designs and response surface techniques for the optimization of chromatographic systems", J. Chromatography A., 1158,.2-14,.
 ##
[27]- M.Khayet, C.Cojocaru (2012) "Air gap membrane distillation: desalination, modeling and optimization", Desalination, 138-145.
 ##
[28]- C.P.Papaneophytou, D.A.Kyriakidis (2012) "Optimization of polyhydroxyalkanoates production from thermusthermophilus HB8 using response surface methodology", J. Poly. Environ. 20, 760-773.
## 
[29]- G.G Vining, R.H Myers (1991) "A graphical approach for evaluating response surface designs in terms of the mean squared error of prediction", Technometrics, 33, 315–326.
 ##
 [30]- N. Gunantara, (2018), "A review of multi-objective optimization: Methods and its applications", This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. Cogent Engineering, 5, 1-16.