Molecular simulation of biogas sweetening by the MIL-47 nanostructure

Document Type : Research paper

Author

Department of Chemical and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran

Abstract

Absorption and separation of carbon dioxide and hydrogen sulfide from biogas by the metal organic framework MIL-47 have been investigated by using the Monte Carlo method. The simulation results have a good agreement with the available experimental data. At first, the adsorption isotherm of pure, binary and ternary blend of methane, carbon dioxide, and hydrogen sulfide gases were studied. The simulation results show that the gas adsorption increases by decreasing and increasing in the temperature and pressure, respectively, and the pure absorption of hydrogen sulfide gas in the MIL-47 is higher than the other gases. The selectivity of carbon dioxide and hydrous sulfide relative to methane gas calculates 0.2 and 2.9 at ambient temperature and pressure, respectively. Therefore, the metal organic framework MIL-47 is not suitable for the absorption and separation of carbon dioxide gas, but it is good able to separation of hydrogen sulfide from biogas.

Keywords

Main Subjects


[1]W.-C. Lin, Y.-P. Chen, and C.-P. Tseng (2013) "Pilot-scale chemical–biological system for efficient H2S removal from biogas",  Bioresource technology, 135, 283-291.
[2] Y. Belmabkhout, G. De Weireld, and A. Sayari (2009) "Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas",  Langmuir, 25, 13275-13278.
[3] Z. Sumer, and S. Keskin (2017) "Molecular simulations of MOF adsorbents and membranes for noble gas separations",  Chemical Engineering Science, 164, 108-121.
[4] A. Nalaparaju, M. Khurana, S. Farooq, I. Karimi, and J. Jiang (2015) "CO 2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization",  Chemical Engineering Science, 124, 70-78.
[5] X.-z. Chu, S.-s. Liu, S.-y. Zhou, Y.-j. Zhao, W.-h. Xing, and C.-H. Lee (2016) "Adsorption behaviors of CO2 and CH4 on zeolites JSR and NanJSR using the GCMC simulations",  Adsorption, 22, 1065-1073.
[6] J. Xu, W. Xing, H. Wang, W. Xu, Q. Ding, L. Zhao, W. Guo, and Z. Yan (2016) "Monte Carlo simulation study of the halogenated MIL-47 (V) frameworks: influence of functionalization on H 2 S adsorption and separation properties",  Journal of materials science, 51, 2307-2319.
[7] N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, T. Devic, C. Serre, T. Loiseau, and G. Ferey (2007) "Adsorption of CO 2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments",  Adsorption, 13, 461-467.
[8] B. Liu, and B. Smit (2009) "Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal− organic frameworks",  Langmuir, 25, 5918-5926.
[9] J. R. Karra, and K. S. Walton (2010) "Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal− organic frameworks",  The Journal of Physical Chemistry C, 114, 15735-15740.
[10] L. Hamon, H. Leclerc, A. Ghoufi, L. Oliviero, A. Travert, J.-C. Lavalley, T. Devic, C. Serre, G. Férey, and G. De Weireld (2011) "Molecular insight into the adsorption of H2S in the flexible MIL-53 (Cr) and rigid MIL-47 (V) MOFs: infrared spectroscopy combined to molecular simulations",  The Journal of Physical Chemistry C, 115, 2047-2056.
[11] A. I. Skoulidas, and D. S. Sholl (2005) "Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations",  The Journal of Physical Chemistry B, 109, 15760-15768.
[12] M. Rahmati, and H. Modarress (2009) "Nitrogen adsorption on nanoporous zeolites studied by Grand Canonical Monte Carlo simulation",  J. Mol. Struct. (Theochem), 901, 110-116.
[13] M. Rahmati, and H. Modarress (2009) "Grand canonical Monte Carlo simulation of isotherm for hydrogen adsorption on nanoporous siliceous zeolites at room temperature",  Appl. Surf. Sci., 255, 4773-4778.
[14] Y. Zeng, X. Zhu, Y. Yuan, X. Zhang, and S. Ju (2012) "Molecular simulations for adsorption and separation of thiophene and benzene in Cu-BTC and IRMOF-1 metal–organic frameworks",  Sep. Purif. Technol., 95, 149-156.
[15] M. K. Song, and K. T. No (2007) "Molecular simulation of hydrogen adsorption in organic zeolite",  Catal. Today, 120, 374-382.
[16] G. P. Lithoxoos, A. Labropoulos, L. D. Peristeras, N. Kanellopoulos, J. Samios, and I. G. Economou (2010) "Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: A combined experimental and Monte Carlo molecular simulation study",  J. Supercrit. Fluids 55, 510-523.
[17] D. H. Jung, D. Kim, T. B. Lee, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, and S. H. Choi (2006) "Grand Canonical Monte Carlo Simulation Study on the Catenation Effect on Hydrogen Adsorption onto the Interpenetrating Metal-Organic Frameworks",  J. Phys. Chem. B, 110, 22987-22990.
[18] L. Huang, L. Zhang, Q. Shao, L. Lu, X. Lu, S. Jiang, and W. Shen (2007) "Simulations of Binary Mixture Adsorption of Carbon Dioxide and Methane in Carbon Nanotubes: Temperature, Pressure, and Pore Size Effects",  J. Phys. Chem. C 111, 11912-11920.
[19] M. G. Ahunbay, O. Karvan, andA. Erdem-Senatalar (2008) "MTBE adsorption and diffusion in silicalite-1",  Micropor. Mesopor. Mat., 115, 93-97.
[20] M. Rahmati, and H. Modarress (2009) "Nitrogen adsorption on nanoporous zeolites studied by grand canonical Monte Carlo simulation",  Journal of Molecular Structure: THEOCHEM, 901, 110-116.
[21] J. Jiang, S. I. Sandler, M. Schenk, and B. Smit (2005) "Adsorption and separation of linear and branched alkanes on carbon nanotube bundles from configurational-bias Monte Carlo simulation",  Physical Review B, 72, 045447.
[22] S. J. Mahdizadeh, and S. F. Tayyari (2012) "Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study",  Journal of molecular modeling, 18, 2699-2708.
[23] R. Babarao, and J. Jiang (2009) "Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal− organic framework: a molecular simulation study",  Journal of the American Chemical Society, 131, 11417-11425.
[24] J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, and H.-C. Zhou (2011) "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks",  Coordination Chemistry Reviews, 255, 1791-1823.
[25] X. Huang, J. Lu, W. Wang, X. Wei, and J. Ding (2016) "Experimental and computational investigation of CO 2 capture on amine grafted metal-organic framework NH2-MIL-101",  Applied Surface Science, 371, 307-313.
[27] N. Rosenbach Jr, H. Jobic, A. Ghoufi, T. Devic, M. Koza, N. Ramsahye, C. Mota, C. Serre, and G. Maurin (2014) "Diffusion of light hydrocarbons in the flexible MIL-53 (Cr) metal–organic framework: a combination of quasi-elastic neutron scattering experiments and molecular dynamics simulations",  The Journal of Physical Chemistry C, 118, 14471-14477.
[28] J. Liu, Y. Wei, P. Li, Y. Zhao, and R. Zou (2017) "Selective H2S/CO2 Separation by Metal–Organic Frameworks Based on Chemical-Physical Adsorption",  The Journal of Physical Chemistry C, 121, 13249-13255.
[29] M. Rahmati, and H. Modarress (2013) "Selectivity of new siliceous zeolites for separation of methane and carbon dioxide by Monte Carlo simulation",  Microporous and Mesoporous Materials, 176, 168-177.