Modeling of the simultaneous elimination of CO2 and H2S in hollow fiber membrane contactors

Document Type : Research paper

Abstract

In this study, membrane contactors are modeled for removal of CO2 and H2S from natural gas stream. In this modeling, the effects of different parameters such as the inlet flow rates, and different types of liquid, as well as wetting phenomenon are investigated. The results showed that NaOH and mono-ethanol amine (MEA) are the best candidates to remove H2S and CO2. Also, wetting - which was ignored in the previous studies - has a considerable effect on this process. As a result, in the case of 50% wetting, CO2 and H2S removal reduced down to 50%. Finally, it can be concluded that although NaOH showed the highest amount of gas removal, MEA could be a better absorbent from an economic point of view.
 

Main Subjects


[1] I. Iliuta, F. Bougie, and M. C. Iliuta (2015), "CO2 removal by single and mixed amines in a hollow‐fiber membrane module investigation of contactor performance." AIChE Journal 61(3) 955-971.
[2] U. Desideri and A. Paolucci (1999), "Performance modeling of a carbon dioxide removal system for power plants", Energy Convers. Manage., 40(18) 1899–1915.
[3] اشکان ذوالفقاری (1390)، «مدل سازی و شبیه سازی عبور H2S و CO2 از درون تماس دهنده های غشایی مورد استفاده در شیرین سازی گاز طبیعی»، دانشگاه صنعتی شریف، پایان نامه کارشناسی ارشد.
[4] A. L. Kohl, R. B. Nielsen (1997), Gas Purification, fifth ed, Gulf Publishing Company, Houston, Texas.
[5] S. M. Javaid Zaidi (2010), "Removal of acid gases from natural gas streams by membrane technology", in Proceedings of the 2nd Annual Gas Processing Symposium, 139–144.
[6] A. Mansourizadeh, A. F. Ismail (2009), "Hollow fiber gas–liquid membrane contactors for acid gas capture: a review", J. Hazard. Mater., 171(1) 38–53.
[7] Y. Lv, X. Yu, S. T. Tu, J. Yan , and E. Dahlquist, (2012). Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Applied Energy, 97, 283-288.
[8] K. R. Westerterp, W. P. M. van Swaaij, A. A. C. M. Beenackers (1984), Chemical Reactor Design and Operation, Wiley, New York.
 
[9] P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron, G. F. Versteeg (2002), "New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors", Chem.Eng. Sci., 57(9) 1639-1651.
[10] Z. Wang, M. Fang, H. Yu, C. C. Wei, and Z. Luo, (2013). Experimental and Modeling Study of Trace CO2 Removal in a Hollow-Fiber Membrane Contactor, Using CO2-Loaded Monoethanolamine. Industrial & Engineering Chemistry Research, 52(50), 18059-18070.
[11] M. Rahbari-Sisakht, A. F. Ismail, D. Rana, and T. Matsuura, (2013). Carbon dioxide stripping from diethanolamine solution through porous surface modified PVDF hollow fiber membrane contactor. Journal of Membrane Science, 427, 270-275.
[12] Z. A. Tarsa,  S. Hedayat, and M. Rahbari-Sisakht, (2015). Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution. Journal of Membrane Science and Research, 1(3), 118-123.
[13] R. Wang, D. Li, C. Zhou, M. Liu, D. Liang (2004), "Impact of DEA solutions with and without CO2 loading on porous polypropylene membranes intended for use as contactors", J. Membr. Sci., 229(1) 147–157.
[14] S. H. Yeon, B. Sea, Y. I. Park, K. H. Lee (2003), "Determination of mass transfer rates in PVDF and PTFE hollow fiber membranes for CO2 absorption", Sep. Sci. Technol., 38(2) 271–293.
[15] J. M. Zheng, Y. Y. Xu, Z. K. Xu (2003), "Shell side mass transfer characteristics in parallel flow hollow fiber membrane module", Sep. Sci. Technol., 38(6) 1247–1267.
[16] B. P. Mandal, A. K. Biswas, S. S. Bandyopadhyay (2004), "Selective absorption of H2S from gas streams containing CO2 and H2S in aqueous solutions of N-methyldiethanolanimne and 2-amino-2-methyl-1 propanol", Sep. Purif. Technol., 35(3) 191–202.
[17] V. Dindore, D. Brilman, G. Versteeg (2005), "Hollow fiber membrane contactor as a gas–liquid model contactor", Chem. Eng. Sci., 60(2) 467–479.
[18] M. Al-Marzouqi, M. El-Naas, S. Marzouk, N. Abdullatif (2008), "Modeling of chemical absorption of CO2 in membrane contactors", Sep. Purif. Technol., 62(3) 499–506.
[19] S. Atchariyawut, R. Jiraratananon, R. Wang (2007), "Separation of CO2 from CH4 by using gas–liquid membrane contacting process", J. Membr. Sci., 304(1) 163–172.
[20] R. E. Treybal (1980), Mass Transfer Operation, Third ed, McGraw-Hill.
[21] Y. Lee, R. D. Noble, B. Y. Yeon, Y. I. Park, K. H. Lee (2001), "Analysis of CO2 removal by hollow fiber membrane contactors", J. Membr. Sci., 194(1) 57–67.
[22] M. Mavroudi, S. P. Kaldis, G. P. Sakellaropoulos (2003), "Reduction of CO2 emissions by a membrane contacting process", Fuel, 82(15) 2153–2159.
[23] D. Barth, C. Tondre, J. Delpuech (1986), "Stopped-flow investigation of the reaction kinetics of carbon dioxide with some primary and secondary alkanolamines in aqueous solutions", Int. J. Chem. Kinet., 18(4) 445–457,.
[24] P. D. Vaidya, E. Y.Kenig (2007), "CO2-alkanolamine reaction kinetics: a review of recent studies", Chem. Eng. Technol., 30(11) 1467–1474.
[25] A. E. Cornelissen (1980), "Simulation of absorption of H2S and CO2 into aqueous alkanolamines in tray and packed columns", Trans. Inst. Chem. Eng., 58 242-250.
[26] M. Zanfir, A. Gavriilidis, C. Wille, V. Hessel (2005), "Carbon dioxide absorption in a falling film microstructured reactor: experimental and modeling", Ind. Eng. Chem. Res., 44(6) 1742-1751.
[27] P. M. M.Blauwhoff, G. F. Versteeg, W. P. M.Van Swaaij (1984), "A study on the reaction between CO2 and alkanoamines in aqueous solution", Chem. Eng. Sci., 39(2) 207-225.
[28] A. K. Saha, S. S. Bandyopadhyay, A. K. Biswas (1993), "Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2methyl-1-propanol", J. Chem. Eng. Data., 38(1) 78–82.
[29] J. J. Ko, M. H. Li (2000), "Kinetics of absorption of carbon dioxide into solutions of N methyldiethanolamin + water", Chem. Eng. Sci., 55(19) 4139–4147.
[30] S. Karror, K. K. Sirkar (1993), "Gas absorption studies in microporous hollow fiber membrane modules", Ind. Eng. Chem. Res., 32(4) 674–684.