[1] Wang, K.-H., et al.,
Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environmental, 1999.
21(1): p. 1-8,
https://doi.org/10.1016/S0926-3373(98)00116-7.
[2] Poulopoulos, S., F. Arvanitakis, and C. Philippopoulos,
Photochemical treatment of phenol aqueous solutions using ultraviolet radiation and hydrogen peroxide. Journal of hazardous materials, 2006.
129(1-3): p. 64-68,
https://doi.org/10.1016/j.jhazmat.2005.06.044.
[3] Luenloi, T., et al.,
Photodegradation of phenol catalyzed by TiO2 coated on acrylic sheets: Kinetics and factorial design analysis. Desalination, 2011.
274(1-3): p. 192-199,
https://doi.org/10.1016/j.desal.2011.02.011.
[5] Hashimoto, K., H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Japanese journal of applied physics, 2005. 44(12R): p. 8269, https://doi.org/10.1143/JJAP.44.8269.
[6] Chiou, C.-H., C.-Y. Wu, and R.-S. Juang,
Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 2008.
139(2): p. 322-329,
https://doi.org/10.1016/j.cej.2007.08.002.
[7] Batten, S.R., et al.,
Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2013.
85(8): p. 1715-1724,
https://doi.org/10.1351/PAC-REC-12-11-20.
[8] Yuan, Y.-P., et al.,
Improving photocatalytic hydrogen production of metal–organic framework UiO-66 octahedrons by dye-sensitization. Applied Catalysis B: Environmental, 2015.
168: p. 572-576,
https://doi.org/10.1016/j.apcatb.2014.11.007.
[9] Horcajada, P., et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 2010. 9(2): p. 172-178, https://doi.org/10.1038/nmat2608.
[10] Chalati, T., et al.,
Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry, 2011.
21(7): p. 2220-2227,
https://doi.org/10.1039/C0JM03563G.
[11] Sarwar, B., et al.,
Synthesis of novel MOF-5 based BiCoO3 photocatalyst for the treatment of textile wastewater. Sustainability, 2022.
14(19): p. 12885,
https://doi.org/10.3390/su141912885.
[12] Roy, D., S. Neogi, and S. De,
Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A (Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation. Chemical Engineering Journal, 2022.
428: p. 131028,
https://doi.org/10.1016/j.cej.2021.131028.
[13] Zilla, R., D. Purnamasari, and R. Zainul. Design of rotary photoreactor using nano Cu/TiO2 for degradation humic acid in outdoor visible light. in Journal of Physics: Conference Series. 2020. IOP Publishing, https://doi.org/10.1088/1742-6596/1481/1/012039.
[16] Kwak, J.-S.,
Application of Taguchi and response surface methodologies for geometric error in surface grinding process. International journal of machine tools and manufacture, 2005.
45(3): p. 327-334,
https://doi.org/10.1016/j.ijmachtools.2004.08.007.
[17] Liu, N., et al.,
Ultrathin graphene oxide encapsulated in uniform MIL-88A (Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018.
221: p. 119-128,
https://doi.org/10.1016/j.apcatb.2017.09.020.
[18] Jamil, T.S., et al.,
Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Separation and purification technology, 2012.
98: p. 270-279,
https://doi.org/10.1016/j.seppur.2012.06.018.
[19] Xu, W.-T., et al.,
Metal–organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton transactions, 2014.
43(9): p. 3792-3798,
https://doi.org/10.1039/C3DT52574K.
[20] Tran, D.-T., A.-T. Phan, and T.-B. Pham,
Boosting tetracycline degradation by integrating MIL-88A (Fe) with CoFe2O4 persulfate activators. Environmental Technology & Innovation, 2023: p. 103502,
https://doi.org/10.1016/j.eti.2023.103502.