بررسی تاثیر پایه‌های اصلاح شده بر عملکرد غشای سیلیکایی دوپه شده با کبالت در جداسازی هیدروژن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز، تبریز، ایران

3 دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در این تحقیق، غشاهای سیلیکایی دوپه شده با کبالت با استفاده از روش سل-ژل سنتز شدند. برای لایه‌نشانی مناسب غشای سیلیکایی انتخابگر، ویژگی‌های پایه‌ی غشایی از اهمیت بالایی برخوردار است. عبوردهی پایه و زبری سطح آن دو ویژگی مهم و قابل اندازه‌گیری در انتخاب پایه می‌باشند. بنابراین، دو نوع پایه اصلاح شده برای این پژوهش انتخاب شدند؛ پایه اول با زبری سطح nm 160 و عبوردهی متوسط هیدروژن در حدود mol m-2s-1Pa-1 10-7×5/5 و پایه دوم با زبری سطح nm 54 و عبوردهی متوسط هیدروژن mol m-2s-1Pa-1 10-6×5/3، مورد استفاده قرار گرفتند. لایه‌ی سیلیکایی دوپه شده با کبالت بر روی هر دو پایه به طور یکسان پوشش‌دهی شد و در هر دو غشا فعالیت مکانیزم غربال مولکولی برای عبوردهی از غشا مشاهده شد. با این حال، استفاده از پایه اصلاح شده با زبری سطح پایین و عبوردهی بالا در غشای سیلیکایی دوپه شده با کبالت دارای عبوردهی هیدروژن خالص mol m-2s-1Pa-1 10-7×3/1 و متوسط انتخاب‌پذیری ایده‌آل 40 و 25 به ترتیب برای H2/N2 و H2/CO2 در دمای °C150 می‌باشد. در حالی‌که، غشای سیلیکایی دوپه شده با کبالت بر پایه‌ی اصلاح شده با زبری سطح بالا و عبوردهی پایین به مراتب عملکرد ضعیف‌تری داشته و دارای عبوردهی هیدروژن خالص mol m-2s-1Pa-1 10-9×6/1 و متوسط انتخاب‌پذیری ایده‌آل 16 و 13 به ترتیب برای H2/N2 و H2/CO2 در همان دما بوده است. نتایج این مطالعه نشان می‌دهد با اینکه روش سل-ژل برای ساخت غشاهای انتخابگر سیلیکایی دوپه شده با کبالت مناسب است، کیفیت پایه مورد استفاده از نظر زبری سطح و عبوردهی تأثیر زیادی بر عملکرد غشا دارد.

کلیدواژه‌ها

موضوعات


[1]          Sun Y. et al., (2022) “Silica hollow spheres-based superhydrophobic PDMS composite membrane for enhanced acetone permselective pervaporation,” Journal of Separation and Purification Technology,304, 122041, https://doi.org/10.1016/j.seppur.2022.122041
 
[2]          Elma M. et al., (2020) “Development of hybrid and templated silica‐p123 membranes for brackish water desalination,” Polymers (Basel), 12(11), 2644, https://doi.org/10.3390/polym12112644
 
[3]          Assa F., Abdi M. A., Ghasemzadeh K., Babaluo A. A., Kahforoushan D., (2015) "Evaluating synthesized nanostructure templated silica membrane performance in separation of carbon dioxide from flue gas stream" Journal of Separation Science and Engineering, 7, 23-33, https://doi.org/10.22103/jsse.2015.868 (in persian)
 
 [4]         Ikuhara Y. H., Mori H., Saito T., and Iwamoto Y., (2007) “High-Temperature Hydrogen Adsorption Properties of Precursor-Derived Nickel Nanoparticle-Dispersed Amorphous Silica,” Journal of the American Ceramic Society, 90(2), 546–552, https://doi.org/10.1111/j.1551-2916.2006.01434.x
 
[5]          Darmawan A., Smart S., Julbe A., Costa J. C. D., (2010) “Iron oxide silica derived from sol-gel synthesis,” Materials (Basel)., 4(2), 448–456, https://doi.org/10.3390/ma4020448
 
[6]          Boffa V., Blank D. H. A., Elshof J. E., (2008) “Hydrothermal stability of microporous silica and niobia-silica membranes,” Journal of Membrane Science, 319(1–2), 256–263, https://doi.org/10.1016/j.memsci.2008.03.042.
 
[7]          Yan M., Yang J., Mu R., Guo Y., Cui X., Song J., (2023) “Fabrication, characteristics and hydrothermal stability of methyl-modified Ni-Co/SiO­­­2 membranes for H2/CO2 separation,” Journal of CO2 Utilization, 68, 102393, https://doi.org/10.1016/j.jcou.2023.102393
 
[8]          Uhlmann D., Liu S., Ladewig B. P., Costa J. C. D, (2009) “Cobalt-doped silica membranes for gas separation,” Journal of Membrane Science, 326(2), 316–321, https://doi.org/10.1016/j.memsci.2008.10.015
 
[9]          Igi R., Yoshioka T., Ikuhara Y. H., Iwamoto Y., Tsuru T., (2008) “Characterization of Co-Doped Silica for Improved Hydrothermal Stability and Application to Hydrogen Separation Membranes at High Temperatures” Journal of the American Ceramic Society, 91(9), 2975–2981, https://doi.org/10.1111/j.1551-2916.2008.02563.
 
[10]        Yacou C., Smart S., Costa J. C. D, (2012) “Lo
               ng term performance cobalt oxide silica membrane module for high temperature H2 separation” Energy and Environmental Science, 5(2), 5820–5832, 2012, https://doi.org/10.1039/C2EE03247C
 
[11]        Yoshino Y., Suzuki T., Nair B., Taguchi H., Itoh N., (2005) “Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature” Journal of Membrane Science, 267(1–2), 8–17, https://doi.org/10.1016/j.memsci.2005.05.020
 
[12]        De Vos R. M., Verweij H., 1998, “Improved performance of silica membranes for gas separation” Journal of Membrane Science, 143(1–2), 37–51, https://doi.org/10.1016/S0376-7388(97)00334-7
 
[13]        Jabbari A. et al., (2014) “Surface modification of α-Alumina support in synthesis of silica membrane for hydrogen purification” International Journal of Hydrogen Energy, 39(32), 18585–18591, https://doi.org/10.1016/j.ijhydene.2014.05.056
 
[14]        Hove M., Luiten-Olieman M. W. J., Huiskes C., Nijmeijer A., Winnubst L., (2017) “Influence of the intermediate layer on the hydrothermal stability of sol-gel derived hybrid silica membranes,” Journal of European Ceramic Society, 37(10), 3435–3441, https://doi.org/10.1016/j.jeurceramsoc.2017.03.042
 
[15]        Oyama S. T., Aono H., Takagaki A., Sugawara T., Kikuchi R., (2020) “Synthesis of silica membranes by chemical vapor deposition using a dimethyldimethoxysilane precursor,” Membranes (Basel)., 10(3), https://doi.org/10.3390/membranes10030050.
 
[16]        Mohammadlou T., Babaluo A. A., Khoshfetrat A. B., (2022) “Preparation of high flux mesoporous γ-alumina membranes for whey proteins isolation: Peptizing agent (acetic acid) and binder (PEG) effects” Ceramics International, 48(15), 21235–21244, https://doi.org/10.1016/j.ceramint.2022.04.043
 
[17]        Ghasemzadeh K. et al., (2015) “Hydrogen production via silica membrane reactor during the methanol steam reforming process: Experimental study” RSC Advances, 5(116), 95823–95832, https://doi.org/10.1039/C5RA14002A
 
[18]         Sedighiyan J., Maghsoudi H., Javadi M., (2023) "Synthesis of SSZ-13 zeolite membrane and investigation of the effect of sodium, lithium, and potassium ions on the permeance of carbon dioxide, methane, and nitrogen" Journal of Separation Science and Engineering, 14(2), 14-24, https://doi.org/10.22103/jsse.2022.3498 (in persian)