مدلسازی جداسازی ذرات غبار در بسترهای پرشده‌ی‌دوار با استفاده از روش‌ برنامه نویسی ژنتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده شیمی و مهندسی شیمی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در سال‌های اخیر راندمان بالای غبارزدایی از گازها، توسط بسترهای ‌پرشده‌‌ی ‌دوار، مورد توجه صنایع مختلف قرار گرفته است. اما فرآیند طراحی این تجهیزات با استفاده از روش‌های تجربی و یا شبیه‌‌سازی‌های دینامیک سیالات محاسباتی، به علت پیچیدگی این بسترها و تعدد پارامترهای موثر در بازدهی آنها، بسیار پرهزینه و زمانبر خواهد بود. از این رو در این پژوهش عملکرد روش برنامه نویسی ژنتیک در مدلسازی این بسترها مورد ارزیابی قرار گرفت. بر این مبنا، 561 داده‌ی تجربی گردآوری و با استفاده از برنامه‌نویسی ژنتیک معادلات مختلفی برای تخمین بازدهی این دستگاه‌‌ها برازش شد. از میان مدل-های ایجاد شده، معادله‌ای با کمترین میزان پیچیدگی و بیشترین دقت انتخاب شد. بررسی‌‌های صورت گرفته نشان داد که معادله‌ی بدست آمده، با ضریب همبستگی 9714/0، میانگین مربعات خطا 79/3 و بیشترین درصد خطا51/1، از دقت بالایی جهت طراحی این بسترها برخوردار بوده است. همچنین تحلیل حساسیت مدل پیشنهادی نیز انجام شده و نتایج نشان داد که اندازه ذرات، سرعت دورانی و دبی مایع بیشترین تاثیر مثبت را بر بازدهی این بسترها خواهند داشت.

کلیدواژه‌ها


  1. 1. Development, N. and M.o.E.P.o.C. Reform Commission of China,(2014) "The upgrade and transformation action plan for coal-fired power energy saving and emission reduction" (2014− 2020). National Energy Administration of China, NDRC, MEP, and NEA Beijing, China.

     

    2. Olaguer, E.P.,(2012) "The potential near-source ozone impacts of upstream oil and gas industry emissions." Journal of the Air & Waste Management Association,. 62(8): p. 966-977.

     

    3. Ray, M.B., et al.,(1998) "Improving the removal efficiency of industrial-scale cyclones for particles smaller than five micrometre." International journal of mineral processing,. 53(1-2): p. 39-47.

     

    4. Martin Jr, S.B. and E.S.(2000) Moyer, "Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects". Applied occupational and environmental hygiene, 15(8): p. 609-617.

     

    5. Weng, G. (2016)"Problems and Solutions of Baghouse in Power Plants. in 2nd International Conference on Computer Engineering, Information Science & Application Technology "(ICCIA 2017)). Atlantis Press.

     

    6. Zhou, Q., et al.,(2019) "Preparation of hollow B–SiO2@ TiO2 composites and their photocatalytic performances for degradation of ammonia-nitrogen and green algae in aqueous solution." Chinese Journal of Chemical Engineering,. 27(10): 2535-2543.

     

    7. Wang, C., et al.(2018), "Up-scaled flash nano-precipitation production route to develop a MnOx–CeO2–Al2O3 catalyst with enhanced activity and H2O resistant performance for NOx selective catalytic reduction with NH3." Chemical Engineering Research and Design,. 134: p. 476-486.

     

    8. Schneiderman, I., et al.(2012), "Oxytocin during the initial stages of romantic attachment: relations to couples’ interactive reciprocity." Psychoneuroendocrinology,. 37(8): p. 1277-1285.

     

    9. Chu, G.-W., et al.(2013)," Distillation studies in a two-stage counter-current rotating packed bed". Separation and Purification Technology,. 102: p. 62-66.

     

    10. Chen, Y.-S. and H.-S. Liu,(2002) "Absorption of VOCs in a rotating packed bed." Industrial & engineering chemistr.research. 41(6): 1583-1588.

     

    11. Zou, H., et al.(2017), "Removal of hydrogen sulfide from coke oven gas by catalytic oxidative absorption in a rotating packed bed". Fuel,. 204: p. 47-53.

     

    12. Qiao, J., et al.(2019)," Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed." Journal of the Taiwan Institute of Chemical Engineers,. 99: p. 1-8.

     

    13. Lin, C.C. and W.T. Liu,(2003)" Ozone oxidation in a rotating packed bed". Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology,. 78(23): p. 138-141.

     

    14. Chen, Y.-S., C.-C. Lin, and H.-S. Liu,(2005) "Mass transfer in a rotating packed bed with various radii of the bed." Industrial & engineering chemistry research,. 44(20): 7868-7875.

     

    15. Tan, C.-S. and J.-E. Chen, (2006)"Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed". Separation and purification technology,. 49(2): p. 174-180.

     

    16. Jassim, M.S., et al.(2007)," Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed." Industrial & engineering chemistry research,. 46(9): p. 2823-2833.

     

    17. Yi, F., et al.(2009), "Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed". Chemical Engineering Journal,. 145(3): p. 377-384.

     

    18            Yang, Y., et al.,(2016) "CFD modeling of gas–liquid mass transfer process in a rotating packed bed". Chemical Engineering Journal,. 294: p. 111-121.

     

    19. Thiels, M., et al.(2016), "Modelling and design of carbon dioxide absorption in rotating packed bed and packed column". IFAC-PapersOnLine,. 49(7): p. 895-900.

     

    20. Li, W., et al.(2017), "Modelling of vacuum distillation in a rotating packed bed by Aspen." Applied Thermal Engineering,. 117: 322-329.

     

    21. Saha, D.,(2009) "Prediction of mass transfer coefficient in rotating bed contactor (Higee) using artificial neural network". Heat and mass transfer,. 45(4): p. 451-457.

     

    22. Lashkarbolooki, M., B. Vaferi, and D. Mowla,(2012) "Using artificial neural network to predict the pressure drop in a rotating packed bed" Separation Science and Technology,. 47(16): p. 2450-2459.

     

    23. Li, W., et al.(2017), "Modelling of dust removal in rotating packed bed using artificial neural networks (ANN)". Applied Thermal Engineering,. 112: p. 208-213.

     

    24. Liu, T., et al.(2019), "Artificial neural network modeling on the prediction of mass transfer coefficient for ozone absorption in RPB." Chemical Engineering Research and Design,. 152: p. 38-47.

     

    25. Im, D., H. Jung, and J.H. Lee,(2020)" Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture." Computers & Chemical Engineering,. 143: p. 107102.

     

    26. Li, W., et al.,(2020) "Modelling of ammonia recovery from wastewater by air stripping in rotating packed beds." Science of The Total Environment,. 702: p. 134971.

     

    27. Feili Monfared, A.E. and A. Sarrafi,(2020) "Modeling and Design of Rotating Packed Beds by the employment of Artificial Intelligence Methods". Journal of Separation Science and Engineering,. 12(1): p. 79-96.

     

    28. Yu, C.-H., et al.(2022), "Process Modeling of CO2 Absorption with Monoethanolamine Aqueous Solutions Using Rotating Packed Beds." Industrial & Engineering Chemistry Research,.

     

    29            Esmaeili, A., et al(2022)., "Modeling of carbon dioxide absorption by solution of piperazine and methyldiethanolamine in a rotating packed bed". Chemical Engineering Science,. 248: p. 117118.

     

    1. Andre, D., F.H. Bennett III, and J.R. Koza,(1996) "Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem." Genetic programming,. 96: p. 3-11.

     

    31. da Rocha Leite, C.F.M.(2022)," Genetic Programming Approaches for Solving Transportation Problems.".

     

    1. Eimer, D.(2014), "Gas treating: absorption theory and practice".: John Wiley & Sons.

     

    1. Yanhui, Z., L. Laishuan, and L. Youzhi, (2003)"Experimental study on flue gas dedusting by hypergravity rotary bed". Environmental Engineering,. 21(6): p. 42-43.

     

    1. Yunhua, S., et al.,(2003)" Research on particle Chemical Industry and Engineering Progress,. 22(5): p. 499-502.

     

    35. Junhua, L. and L. Youzhi,(2007) "Experimental study of removal dust from flue gas by high gravidity technology and its mechanism". Chemical Production and Technology,.

     

    1. Fu, J.,(2015) "Studies on technology of wet dust collection under high gravity". North University of China,.

     

    1. O’Neill, M., Riccardo Poli, William B. Langdon, Nicholas F. McPhee:(2009) "a field guide to genetic programming"., Springer.

     

    38. Cramer, N.L(1985)." A representation for the adaptive generation of simple sequential programs. in Proceedings of the first international conference on genetic algorithms"..

     

    39. Koza, J.R. and R. Poli,(2005) "Genetic programming, in Search methodologies"., Springer. p. 127-164.

     

    40. Ekart, A. and S.Z. Nemeth,(2001)" Selection based on the pareto nondomination criterion for controlling code growth in genetic programming". Genetic Programming and Evolvable Machines,. 2(1): p. 61-73

     

    41. Le, N., et al.(2016) "Complexity measures in genetic programming learning": a brief review in 2016 IEEE congress on evolutionary computation (CEC).. IEEE.

     

    42. Chen, G., et al.(2014), "The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process". Fuel, 2014. 126: p. 202-212.

     

    43. Benamara, C., et al.,(2020) "Prediction of wax appearance temperature using artificial intelligent techniques". Arabian Journal for Science and Engineering,. 45(2): p. 1319-1330.