[1] Shang, J., Hanif, A., Li, G., Xiao, G., Liu, J. Z., Xiao, P., & Webley, P. A. (2020). Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification. Industrial & Engineering Chemistry Research, 59(16), 7857-7865.
[2] Pera-Titus, M. (2014). Porous inorganic membranes for CO2 capture: present and prospects. Chemical reviews, 114(2), 1413-1492.
[3] Pachauri, R. K., & Meyer, L. A. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.U.S. Department of energy.
[4] Kosinov, N., Auffret, C., Gücüyener, C., Szyja, B. M., Gascon, J., Kapteijn, F., & Hensen, E. J. (2014). High flux high-silica SSZ-13 membrane for CO 2 separation. Journal of Materials Chemistry A, 2(32), 13083-13092.
[5] Du, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO 2 separations. Energy & Environmental Science, 5(6), 7306-7322.
[6] Anderson, M., Wang, H., & Lin, Y. S. (2012). Inorganic membranes for carbon dioxide and nitrogen separation. Chemical Engineering, 28(2-3), 101-121.
[7] Zhang, Z., Yao, Z. Z., Xiang, S., & Chen, B. (2014). Perspective of microporous metal–organic frameworks for CO 2 capture and separation. Energy & environmental science, 7(9), 2868-2899.
[8] Diestel, L., Liu, X. L., Li, Y. S., Yang, W. S., & Caro, J. (2014). Comparative permeation studies on three supported membranes: Pure ZIF-8, pure polymethylphenylsiloxane, and mixed matrix membranes. Microporous and mesoporous materials, 189, 210-215.
[9] Caro, J., Noack, M., Kölsch, P., & Schäfer, R. (2000). Zeolite membranes–state of their development and perspective. Microporous and mesoporous materials, 38(1), 3-24.
[10] Gascon, J., Kapteijn, F., Zornoza, B., Sebastian, V., Casado, C., & Coronas, J. (2012). Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chemistry of Materials, 24(15), 2829-2844.
[11] Lai, Z., Bonilla, G., Diaz, I., Nery, J. G., Sujaoti, K., Amat, M. A., Vlachos, D. G. (2003). Microstructural optimization of a zeolite membrane for organic vapor separation. Journal of Membrane Science, 300(5618), 456-460.
[12] Yue, B., Liu, S., Chai, Y., Wu, G., Guan, N., & Li, L. (2022). Zeolites for separation: Fundamental and application. Journal of Energy Chemistry.
[13] Kosinov, N., Auffret, C., Sripathi, V. G., Gücüyener, C., Gascon, J., Kapteijn, F., & Hensen, E. J. (2014). Influence of support morphology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous and mesoporous materials, 197, 268-277.
[14] Li, S., Martinek, J. G., Falconer, J. L., Noble, R. D., & Gardner, T. Q. (2005). High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial & engineering chemistry research, 44(9), 3220-3228.
[15] Poshusta, J. C., Tuan, V. A., Falconer, J. L., & Noble, R. D. (1998). Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & engineering chemistry research, 37(10), 3924-3929.
[16] Li, S., Falconer, J. L., & Noble, R. D. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135.
[17] Lixiong, Z., Mengdong, J., & Enze, M. (1997). Synthesis of SAPO-34/ceramic composite membranes. In Studies in Surface Science and Catalysis. Elsevier .Vol. 105, pp. 2211-2216.
[18] Janocha, A., & Wojtowicz, K. (2018). Studies reducing the H2S from natural gas of using polyimide membrane. Nafta-Gaz, 74.
[19] Hailu, Y., Tilahun, E., Brhane, A., Resky, H., & Sahu, O. (2019). Ion exchanges process for calcium, magnesium and total hardness from ground water with natural zeolite. Groundwater for Sustainable Development, 8, 457-467.
[20] Pham, T. D., Liu, Q., & Lobo, R. F. (2013). Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir, 29(2), 832-839.
[21] Smith, L. J., Eckert, H., & Cheetham, A. K. (2000). Site preferences in the mixed cation zeolite, Li, Na-chabazite: a combined solid-state NMR and neutron diffraction study. Journal of the American Chemical Society, 122(8), 1700-1708.
[22] Civalleri, B., Ferrari, A. M., Llunell, M., Orlando, R., Merawa, M., & Ugliengo, P. (2003). Cation selectivity in alkali-exchanged chabazite: an ab initio periodic study. Chemistry of materials, 15(21), 3996-4004.
[23] Ugliengo*, P., Busco, C., Civalleri, B., & Zicovich-Wilson, C. M. (2005). Carbon monoxide adsorption on alkali and proton-exchanged chabazite: an ab-initio periodic study using the CRYSTAL code. Molecular Physics, 103(18), 2559-2571.
[24] Serati-Nouri, H., Jafari, A., Roshangar, L., Dadashpour, M., Pilehvar-Soltanahmadi, Y., & Zarghami, N. (2020). Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering: C, 116, 111225.
[25] Guan, G., Kusakabe, K., & Morooka, S. (2001). Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes. Microporous and mesoporous materials, 50(2-3), 109-120.
[26] Chew, T. L., Ng, T. Y. S., & Yeong, Y. F. (2019). Zeolite Membranes for CO2 Permeation and Separation. In Membrane Technology for CO2 Sequestration and Separation. CRC Press. pp. 182-201.
[27] Aydani, A., Brunetti, A., Maghsoudi, H., & Barbieri, G. (2021). CO2 separation from binary mixtures of CH4, N2, and H2 by using SSZ-13 zeolite membrane. Separation and Purification Technology, 256, 117796.
[28] Maghsoudi, H., Soltanieh, M., Bozorgzadeh, H., & Mohamadalizadeh, A. (2013). Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption, 19(5), 1045-1053.
[29] Vlasveld, D. P. N., Groenewold, J. H. E. N., Bersee, H. E. N., & Picken, S. J. (2005). Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer, 46(26), 12567-12576.
[30] Kalipcilar, H., Gade, S. K., Noble, R. D., & Falconer, J. L. (2002). Synthesis and separation properties of B-ZSM-5 zeolite membranes on monolith supports. Journal of membrane science, 210(1), 113-127.
[31] Song, S., Gao, F., Zhang, Y., Li, X., Zhou, M., Wang, B., & Zhou, R. (2019). Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations. Separation and Purification Technology, 209, 946-954.