سنتز و ارزیابی کارائی غشای اسمز معکوس با گرافن عامل دار شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید بهشتی

2 استاد

3 دانشگاه رازی کرمانشاه

چکیده

رایج‌ترین روش از بین فن‌آوری‌های نمک‌زدایی، روش غشایی است. باوجود کاربرد زیاد روش یادشده، این شیوه دارای ضعف‌هایی مانند شار محدود و مقاومت کم در برابر کلر است. در این تحقیق، یک‌راه حل بر پایه استفاده از اکسید گرافن عامل‌دار شده با تیونیل کلراید(GO-OCl) در ساختار غشای پلی‌آمیدی پیشنهاد شده است. برای عملی کردن این ایده از یک روش جدید برای بهینه‌سازی تولید غشای حاوی GO-OCl استفاده شد. در گام اول طراحی آزمایش‌ها با استفاده از روش طراحی مخلوط حددار (CMD) صورت پذیرفت. براساس آن سیزده ترکیب از سه ماده: تریمیسل کلرید، m-فنیلین دی آمین و GO-COCl انتخاب شد. سپس خصوصیاتی ازجمله دفع نمک، مقاومت در برابر کلر و شار اندازه‌گیری گردید. با استفاده از روش بهینه‌سازی چند متغیره با بهینه کردن سه پارامتر یادشده، غلظت بهینه به دست آمد و متعاقباً غشای متناظر با آن ساخته شد. از مقایسه عملکرد غشای بهینه ساخته‌شده، با غشاء پلی‌آمیدی، مشخص شد که شار عبوری آب 6/50 درصد افزایش، دفع نمک 3 درصد کاهش و مقاومت در برابر اکسیداسیون کلر91/4 درصد افزایش داشته است.

کلیدواژه‌ها

موضوعات


1]           J. W. Day and J. M. Rybczyk, "Chapter 36 - Global Change Impacts on the Future of Coastal Systems: Perverse Interactions Among Climate Change, Ecosystem Degradation, Energy Scarcity, and Population," in Coasts and Estuaries, E. Wolanski, J. W. Day, M. Elliott, and R. Ramachandran, Eds.: Elsevier, 2019, pp. 621-639.
 ##
[2]           K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination—Development to date and future potential," Journal of Membrane Science, vol. 370, no. 1, pp. 1-22, 2011.
 ##
[3]           B. Mayor, "Growth patterns in mature desalination technologies and analogies with the energy field," Desalination, vol. 457, pp. 75-84, 2019/05/01/ 2019.
 ##
[4]           R. Bi, Q. Zhang, R. Zhang, Y. Su, and Z. Jiang, "Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property," Journal of Membrane Science, vol. 553, pp. 17-24, 2018/05/01/ 2018.
 ##
[5]           T. Zou, G. Kang, M. Zhou, M. Li, and Y. Cao, "Submerged vacuum membrane distillation crystallization (S-VMDC) with turbulent intensification for the concentration of NaCl solution," Separation and Purification Technology, vol. 211, pp. 151-161, 2019/03/18/ 2019.
 ##
[6]           W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, and A. F. Ismail, "A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches," Water Research, vol. 80, pp. 306-324, 9/1/ 2015.
##
[7]           J. Zhu et al., "High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine," Journal of Membrane Science, vol. 554, pp. 97-108, 2018/05/15/ 2018.
##
[8]           T. A. Otitoju, R. A. Saari, and A. L. Ahmad, "Progress in the modification of reverse osmosis (RO) membranes for enhanced performance," Journal of Industrial and Engineering Chemistry, 2018/07/18/ 2018.
 ##
[9]           N. Misdan, A. Ismail, and N. Hilal, "Recent advances in the development of (bio) fouling resistant thin film composite membranes for desalination," Desalination, 2015.
 ##
[10]         M. Liu, Q. Chen, L. Wang, S. Yu, and C. Gao, "Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)," Desalination, vol. 367, pp. 11-20, 2015.
 ##
[11]         N. Niksefat, M. Jahanshahi, and A. Rahimpour, "The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application," Desalination, vol. 343, pp. 140-146, 2014/06/16/ 2014.
 ##
[12]         T. A. Saleh and V. K. Gupta, "Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance," Separation and Purification Technology, vol. 89, pp. 245-251, 2012/03/22/ 2012.
 ##
[13]         H. Wu, B. Tang, and P. J. T. J. o. P. C. C. Wu, "MWNTs/polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity," vol. 114, no. 39, pp. 16395-16400, 2010.
##
[14]         S. Xia, L. Yao, Y. Zhao, N. Li, and Y. Zheng, "Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal," Chemical Engineering Journal, vol. 280, pp. 720-727, 2015.
 ##
[15]         H. Mahdavi and A. Rahimi, "Zwitterion functionalized graphene oxide/polyamide thin film nanocomposite membrane: Towards improved anti-fouling performance for reverse osmosis," Desalination, vol. 433, pp. 94-107, 2018/05/01/ 2018.
 ##
[16]         K. A. Mahmoud, B. Mansoor, A. Mansour, and M. Khraisheh, "Functional graphene nanosheets: The next generation membranes for water desalination," Desalination, vol. 356, pp. 208-225, 1/15/ 2015.
 ##
[17]         A. Karkooti, A. Z. Yazdi, P. Chen, M. McGregor, N. Nazemifard, and M. Sadrzadeh, "Development of advanced nanocomposite membranes using graphene nanoribbons and nanosheets for water treatment," Journal of Membrane Science, vol. 560, pp. 97-107, 2018/08/15/ 2018.
 ##
[18]         S. G. Kim, D. H. Hyeon, J. H. Chun, B.-H. Chun, and S. H. Kim, "Novel thin nanocomposite RO membranes for chlorine resistance," Desalination and Water Treatment, vol. 51, no. 31-33, pp. 6338-6345, 2013.
 ##
[19]         F. o. Perreault, M. E. Tousley, and M. Elimelech, "Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets," Environmental Science & Technology Letters, vol. 1, no. 1, pp. 71-76, 2013.
 ##
[20]         M. Safarpour, A. Khataee, and V. Vatanpour, "Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO 2 with improved desalination performance," Journal of Membrane Science, vol. 489, pp. 43-54, 2015.
 ##
[21]         K. Garg, R. Shanmugam, and P. C. Ramamurthy, "Synthesis, characterisation and optical studies of new tetraethyl- rubyrin-graphene oxide covalent adducts," Optical Materials, vol. 76, pp. 42-47, 2018/02/01/ 2018
. ##
[22]         J.-A.-D. Sharabati et al., "Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance," Separation and Purification Technology, vol. 212, pp. 438-448, 2019/04/01/ 2019.
 ##
[23]         J. A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data. Wiley, 2011.
 ##
[24]         A. Khaskhoussi et al., "Mixture design approach to optimize the performance of TiO2 modified zirconia/alumina sintered ceramics," vol. 137, pp. 1-8, 2018.
 ##
[25]         B.-H. Jeong et al., "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes," Journal of Membrane Science, vol. 294, no. 1, pp. 1-7, 2007/05/15/ 2007.
 ##
[26]         C. Yu et al., "Polyamide thin-film composite membrane fabricated through interfacial polymerization coupled with surface amidation for improved reverse osmosis performance," Journal of Membrane Science, vol. 566, pp. 87-95, 2018/11/15/ 2018.
 ##
[27]         A. Khaskhoussi, L. Calabrese, H. Bouhamed, A. Kamoun, E. Proverbio, and J. Bouaziz, "Mixture design approach to optimize the performance of TiO2 modified zirconia/alumina sintered ceramics," Materials & Design, vol. 137, pp. 1-8, 2018/01/05/ 2018.
 ##
[28]         J. Yin, G. Zhu, and B. Deng, "Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification," Desalination, vol. 379, pp. 93-101, 2016.
 ##
[29]         R. Ling, L. Yu, T. P. T. Pham, J. Shao, J. P. Chen, and M. J. J. o. M. S. Reinhard, "The tolerance of a thin-film composite polyamide reverse osmosis membrane to hydrogen peroxide exposure," vol. 524, pp. 529-536, 2017.