جذب سطحی رقابتی سه یون فلزی کروم، سرب و جیوه در محلول‌های آبی بر روی کربن فعال مغناطیسی تهیه شده از هسته هلو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف، دانشکده مهندسی شیمی و نفت، تهران، ایران

2 دانشگاه صنعتی سهند، دانشکده مهندسی شیمی، تبریز، ایران

چکیده

هدف از پروژه حاضر سنتز یک نانو جاذب مغناطیسی عامل‌دار با استفاده از کربن فعال تهیه‏ شده از هسته هلو با بکارگیری روش هم‌رسوبی برای حذف هم‏زمان یون فلزات سنگین از محلول آبی است. آنالیزهای مختلفی شامل بوهم، پراش اشعه ایکس، سطح فعال، میکروسکوپ الکترونی روبشی، طیف‏نگاری فلورسانس پرتو ایکس و مغناطیس‌سنج ارتعاشی برای تعیین ساختار سطحی نانو جاذب سنتز شده مورد مطالعه قرار گرفتند. نتایج نشان داد که نانو جاذب مغناطیسی با توزیع مناسب کریستال‏های اکسید آهن با اندازه 20 نانومتر بر روی سطح کربن فعال به صورت کروی با سطح فعال 325 مترمربع بر گرم شکل گرفته است. داده‌های آزمایشگاهی طراحی شده با روش پاسخ سطح، نشان داد که دمای جذب و قلیاییت محیط دارای اثر هم‏افزایی در مقدار جذب رقابتی یون‌های سرب، کروم و جیوه در فاز مایع هستند. حداکثر درصد حذف یون جیوه، کروم و سرب به ترتیب 91/5، 62/05 و 82/7 در شرایط بهینه محاسبه شد.

کلیدواژه‌ها

موضوعات


 
[1]                 Y. Sun, D. Lv, J. Zhou, X. Zhou, Z. Lou, S.A. Baig, X. Xu (2017) “Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study”, Chemosphere, 185, 452-461.
##
[2]   علی عظیمی، علی داداللهی سهراب، علیرضا صفاهیه، حسین ذوالقرنین، احمد سواری، ایرج فقیری (1391) «مطالعه سطوح فلزات سنگین جیوه، کادمیوم، سرب و مس در رسوبات شمال غرب خلیج فارس – بندر امام خمینی (ره)»، اقیانوس شناسی، سال سوم، شماره 11، صفحه 41-33.
##
[3]                 L. Campanella, E. Cardarelli, T. Ferri, B.M. Petronio (1986) “Mercury removal from petrochemical wastes”, Water Research, 20, 63-65.
##
[4]                 M. Shahid, C. Dumat, S. Khalid, E. Schreck, T. Xiong, N.K. Niazi (2017) “Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake”, Journal of Hazardous Materials, 325, 36-58.
##
[5]                 S. Bolan, A. Kunhikrishnan, B. Seshadri, G. Choppala, R. Naidu, N.S. Bolan, Y.S. Ok, M. Zhang, C.G Li, F. Li, B. Noller, M.B. Kirkhamn (2017) “Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines”, Environment International, 108, 103–118.
##
[6]                 WWW.NIPC.ir
##
[7]                 M.A.P. Cechinel, D.A. Mayer, T.A. Pozdniakova, L.P. Mazur, R.A.R. Boaventura, A.A.U. de Souza, S.M.A.G.U. de Souza, V.J.P. Vilar (2016) “Removal of Metal Ions from a Petrochemical Wastewater using Brown Macroalgae as Natural Cation-Exchangers”, Chemical Engineering Journal, 286, 1-15.
##
[8]                    H. Chen, J. Luo, X. Wang, X. Liang, Y. Zhao, C. Yang, M.I. Baikenov, X. Su (2018) “Synthesis of Al2O3/carbon composites from wastewater as superior adsorbents for Pb(II) and Cd(II) removal”,Microporous and Mesoporous Materials, 255, 69-75.
##
[9]                 A. Malakahmad, A. Hasani, M. Eisakhani, M.H. Isa (2011) “Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater”, Journal of Hazardous Materials, 191, 118–125.
##
[10]              H. Hussein, S. Farag, K. Kandil, H. Moawad (2005) “Tolerance and uptake of heavy metals by Pseudomonads”, Process Biochemistry, 40, 955–961.
##
[11]              L.K. Wang, D.A. Vaccari, Y. Li, N.K. Shammas (2004) Chemical precipitation, in: L.K. Wang, Y.T. Hung, N.K. Shammas (Eds.), Physicochemical Treatment Processes, vol. 3, Humana Press, NJ, pp. 141–198.
##
[12]              N.K. Shammas (2004). Coagulation and flocculation, in: L.K. Wang, Y.T. Hung, N.K. Shammas (Eds.), Physicochemical Treatment Processes, vol. 3, Humana Press, NJ, pp. 103–140.
##
[13]              L.K. Wang, E.M. Fahey, Z.C. Wu (2004) Dissolved air flotation, in: L.K. Wang, Y.T. Hung, N.K. Shammas (Eds.), Physicochemical Treatment Processes, vol. 3, Humana Press, NJ, pp. 431–500.
##
[14]              A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens (2004) “Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method”, Chemosphere, 56, 91–106.
##
[15]              T.K. Tran, K.F. Chiu, C.Y. Lin, H.J. Leu (2017) “Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process”, International Journal of Hydrogen Energy, 42, 27741-27748.
##
[16]              N. Saffaj, H. Loukili, S.A. Younssi, A. Albizane, M. Bouhria, M. Persin, A. Larbot (2004) “Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay”, Desalination, 168, 301–306.
##
[17]              M. Zabihi, A. Ahmadpour, A. HaghighiAsl (2009) “Removal of mercury from water by carbonaceous sorbents derived from walnut shell”, Journal of Hazardous Materials, 167, 230–236.
##
[18]              M. Zabihi, A. HaghighiAsl, A. Ahmadpour (2010) “Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell”, Journal of Hazardous Materials, 174, 251–256.
##
[19]              A. Ahmadpour, M. Zabihi, M. Tahmasbi, T. RohaniBastami (2010) “Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions”, Journal of Hazardous Materials, 182, 552-556.
##
[20]              A. Ahmadpour, T. RohaniBastami, M. Tahmasbi, M. Zabihi (2012) “Rapid removal of heavy metals ions from aqueous solutions by low cost adsorbents”, International Journal of Global Environmental Issues, 12, 318-331.
##
[21]              M.H. Fatehi, J. Shayegan, M. Zabihi, I. Goodarznia (2017) “Functionalized magnetic nanoparticles supported on activated carbon for adsorption of Pb(II) and Cr(VI) ions from saline solutions”, Journal of Environmental Chemical Engineering, 5, 1754-1762.
##
[22]              M. Pazouki, M. Zabihi, J. Shayegan, M.H. Fatehi (2018) “Mercury ion adsorption on AC@Fe3O4-NH2-COOH from saline solutions: Experimental studies and artificial neural network modeling”, Korean Journal of Chemical Engineering, 35, 671-683.
##
[23]              A. Ahmadpour, M. Zabihi, T. RohaniBastami, M. Tahmasbi, A. Ayati (2016) “Rapid removal of mercury ion (II) from aqueous solution by chemically activated eggplant hull adsorbent”, Journal of Applied Research in Water and Wastewater, 6, 236-240.
##
[24]              R. Upadhyay, P.K. Pandey, Pardeep (2017) “Adsorption of Cu(II) and Cr(VI) by zeolite in batch and column mode”, MaterialsToday: Proceedings, 4, 10504-10508.
##
[25]              L.H. Velazquez-Jimenez, J.A. Arcibar-Orozco, J.R. Rangel-Mendez (2018) “Overview of As(V) adsorption on Zr-functionalized activated carbon for aqueous streams remediation”, Journal of Environmental Management, 212, 121-130.
##
[26]              C.P. Johnston, M. Chrysochoou (2015) “Mechanisms of chromate adsorption on boehmite”, Journal of Hazardous Materials, 281, 56-63
##
[27]              B.N. Papas, J.L. Whitten (2016) “Adsorption of copper on a γ-alumina support”, Surface Science, 651, 22-27.
##
[28]              Y. Ono, R. Futamura, Y. Hattori, T. Sakai, K. Kaneko (2017) “Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber”, Journal of Colloid and Interface Science, 508, 14-17.
##
[29]              J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heoa, R.D. Delauned, D.C. Seo (2015) “Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions”, Chemosphere, 142, 77-83.
##
[30]              X. Maa, S.T. Yang, H. Tang, Y. Liu, H. Wang (2015) “Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids”, Journal of Colloid and Interface Science, 448, 347–355.
##
[31]              F. Wang, Y. Pan, P. Cai, T. Guo, H. Xiao (2017) “Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent”, Bioresource Technology, 241, 482-490.
##
[32]              D. Saha, S. Barakat, S.V. Bramer, K.A. Nelson, D.K. Hensley, J. Chen (2016) “Non-Competitive and Competitive Adsorption of Heavy Metals in Sulfur-functionalized Ordered Mesoporous Carbon”, ACS Applied Materials & Interfaces, 49, 34132-34142.
##
[33]              A. Ahmadpour, D.D. Do (1997) “The preparation of activated carbon from macadamia nutshell by chemical activation”, Carbon, 35, 1723-1732.
##
[34]                 A. Ahmadpour, D.D. Do (1995) “Characterization of modified activated carbons: Equilibria and dynamics studies”, Carbon, 33, 1393-1398.
##
[35]                 M. Abbas, S. Kaddour, M. Trari (2014) “Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon”, Journal of Industrial and Engineering Chemistry, 20, 745–751.
##
[36]              K. Chomiak, S. Gryglewicz, K. Kierzek, J. Machnikowski (2017) “Optimizing the properties of granular walnut-shell based KOH activated carbons for carbon dioxide adsorption”, Journal of CO₂ Utilization, 21, 436–443.
##
[37]                 A.M. de Yuso, B. Rubio, M.T. Izquierdo (2014) “Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons”, Fuel Processing Technology, 119, 74–80.
##
[38]                 I.P.P. Cansado, P.A.M. Mourão, J.A.F.L. Gomes, V. Almodôvar (2017) “Adsorption of MCPA, 2,4-D and diuron onto activated carbons from wood composites”, Ciência & Tecnologia dos Materiais, 29, 224–228.
##
[39]                 S.A. Torrellas, R.G. Lovera, N. Escalona, C. Sepulveda, J.L. Sotelo, J. Garcia (2015) “Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions”, Chemical Engineering Journal, 279, 788–798.
##
[40]              D. Duranoglu, A.W. Trochimczuk, U. Beker (2010) “A comparison study of peach stone and acrylonitrile-divinylbenzene copolymer based activated carbons as chromium(VI) sorbents”, Chemical Engineering Journal, 165, 56–63.
##
[41]              T. Uysal, G. Duman, Y. Onal, I. Yasa, J. Yanik (2014) “Production of activated carbon and fungicidal oil from peach stone by two-stage process”, Journal of Analytical and Applied Pyrolysis, 108, 47-55.
##
[42]              N. El Hannafi, M.A. Boumakhla, T. Berrama, Z. Bendjama (2008) “Elimination of phenol by adsorption on activated carbon prepared from the peach cores: modelling and optimization”, Desalination, 223, 264–268.
##
[43]              R.G. Saratalea, S.S. Sivapathana, W.J. Junga, H.Y. Kima, G.D. Sarataleb, D.S. Kim (2016) “Preparation of activated carbons from peach stone by H4P2O7 activation and its application for the removal of Acid Red 18 and dye containing wastewater”, Journal of Environmental Science and Health Part A, 51, 164–177.
##
[44]              Ö. Gerçel, A. Özcan, A.S. Özcan, H.F. Gerçel (2009) “Capacity of Activated Carbon Derived from Peach Stones by K2CO3 in the Removal of Acid, Reactive, and Direct Dyes from Aqueous Solution”, Journal of Environmental Engineering,135, 333-340.
##