[1] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 07/27/print 2006.
[2] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, and M. Krishnan, "An Integrated Nanoliter DNA Analysis Device," Science, vol. 282, pp. 484-487, 1998.
[3] T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic Large-Scale Integration," Science, vol. 298, pp. 580-584, 2002.
[4] C. F. Bucholz, D. Verhalten, and A. Schwefel, "Ges¨attigten, Aufl¨osung des Salpetersauren Urans und des Wassers zu dem Uran Haltigen Schwefel¨ather," Neues allgem Journal der Chemie, vol. 4, pp. 134–160, 1805.
[5] D. S. Flett, "Solvent extraction in hydrometallurgy: the role of organophosphorus extractants," Journal of Organometallic Chemistry, vol. 690, pp. 2426-2438, 5/16/ 2005.
[6] G. Skarnemark, "Solvent Extraction and Ion Exchange in Radiochemistry," in Handbook of Nuclear Chemistry, A. Vértes, S. Nagy, Z. Klencsár, R. Lovas, and F. Rösch, Eds., ed: Springer US, 2011, pp. 2403-2428.
[7] S. E. Kentish and G. W. Stevens, "Innovations in separations technology for the recycling and re-use of liquid waste streams," Chemical Engineering Journal, vol. 84, pp. 149-159, 10/15/ 2001.
[8] M. N. Kashid, Y. M. Harshe, and D. W. Agar, "Liquid−Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors," Industrial & Engineering Chemistry Research, vol. 46, pp. 8420-8430, 2007/12/01 2007.
[9] J. P. Brody and P. Yager, "Diffusion-based extraction in a microfabricated device," Sensors and Actuators A: Physical, vol. 58, pp. 13-18, 1// 1997.
[10] T. Sato K, M. okeshi, T. Sawada, and K. T, "Molecular transport between two phases in a microchannel.," Anal Sci, vol. 16, pp. 455-456, 2000.
[11] M. Tokeshi and T. Kitamori, "Solvent extraction on chips, in Handbook of Capillary andMicrochip Electrophoresis and Associated Microtechniques," CRC Press, pp. 1021-1035, 2007.
[12] P. Žnidaršič-Plazl and I. Plazl, "Steroid extraction in a microchannel system—mathematical modelling and experiments," Lab on a Chip, vol. 7, pp. 883-889, 2007.
[13] H. Miyaguchi, M. Tokeshi, Y. Kikutani, A. Hibara, H. Inoue, and T. Kitamori, "Microchip-based liquid–liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine," Journal of Chromatography A, vol. 1129, pp. 105-110, 2006.
[14] P. Kuban, J. Berg, and P. K. Dasgupta, "Vertically stratified flows in microchannels. Computational simulations and applications to solvent extraction and ion exchange," Analytical chemistry, vol. 75, pp. 3549-3556, 2003.
[15] S. Bowden, P. Monaghan, R. Wilson, J. Parnell, and J. Cooper, "The liquid–liquid diffusive extraction of hydrocarbons from a North Sea oil using a microfluidic format," Lab on a Chip, vol. 6, pp. 740-743, 2006.
[16] T. Maruyama, H. Matsushita, J.-i. Uchida, F. Kubota, N. Kamiya, and M. Goto, "Liquid membrane operations in a microfluidic device for selective separation of metal ions," Analytical chemistry, vol. 76, pp. 4495-4500, 2004.
[17] M. Kashid, Y. Harshe, and D. W. Agar, "Liquid− liquid slug flow in a capillary: an alternative to suspended drop or film contactors," Industrial & Engineering Chemistry Research, vol. 46, pp. 8420-8430, 2007.
[18] J. G. Kralj, H. R. Sahoo, and K. F. Jensen, "Integrated continuous microfluidic liquid–liquid extraction," Lab on a Chip, vol. 7, pp. 256-263, 2007.
[19] W. Gaakeer, M. De Croon, J. Van Der Schaaf, and J. Schouten, "Liquid–liquid slug flow separation in a slit shaped micro device," Chemical engineering journal, vol. 207, pp. 440-444, 2012.
[20] A. Günther, M. Jhunjhunwala, M. Thalmann, M. A. Schmidt, and K. F. Jensen, "Micromixing of miscible liquids in segmented gas− liquid flow," Langmuir, vol. 21, pp. 1547-1555, 2005.
[21] J. Polak and B. C.-Y. Lu, "Mutual solubilities of hydrocarbons and water at 0 and 25 C," Canadian Journal of Chemistry, vol. 51, pp. 4018-4023, 1973.