سینتیک و سازوکار انتقال توریم (IV) از طریق غشای مایع توده ای حاوی دی (2- اتیل هگزیل) فسفریک اسید در کروزن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته ی کارشناسی ارشد مهندسی هسته ای - گرایش چرخه سوخت

2 هیأت علمی پژوهشگاه علوم و فنون هسته ای - سازمان انرژی اتمی ایران

3 هیئت علمی دانشکده مهندسی هسته ای دانشگاه شهید بهشتی

4 سرپرست گروه آموزشی فرآوری و ساخت سوخت -پزوهشکده مواد و چرخه سوخت- سازمان انرژی اتمی ایران

چکیده

سینتیک و سازوکار انتقال توریم (IV) از طریق غشای مایع توده ای حاوی دی (2- اتیل هگزیل) فسفریک اسید (D2EHPA) مورد بررسی قرار گرفت. آزمایش های انتقال با تغییر پارامترهایی چون نوع و غلظت اسید در فازهای دهنده و پذیرنده، غلظت توریم (IV) در فاز دهنده، غلظت حامل، و زمان تماس فازها به روش ناپیوسته طراحی و اجرا شد. هیدروکلریک اسید 0/0001 مولار حاوی 50 میلی گرم بر لیتر توریم به عنوان فاز دهنده (خوراک)، سولفوریک اسید 1/5 مولار به عنوان فاز پذیرنده (محلول بازیابی)، و دی (2- اتیل هگزیل) فسفریک اسید 0/2 مولار، در مدت زمان 960 دقیقه بهترین شرایط برای انتقال توریم را فراهم نمود. سینتیک انتقال توریم (IV) با فرض یک واکنش متوالی استخراج و استخراج معکوس برگشت ناپذیر در سطوح مشترک بررسی شد. از بررسیهای اثر دما مقدار انرژی فعال سازی برای واکنش های استخراج و استخراج معکوس توریم (IV) به ترتیب، برابر با 22/94 و 20/55 کیلو ژول بر مول محاسبه شد که نشان دهنده ی آن است که در انتقال توریم (IV) فرایند استخراج از طریق روند مختلط و فرایند استخراج معکوس از طریق عمدتاً نفوذ کنترل می شود.

کلیدواژه‌ها

موضوعات


[1] M. Fujita, Y. Ide, D. Sato, P. S. Kench, Y. Kuwahara, H. Yokoki (2014) “Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu”, Chemosphere, 95, 628-634.
[2] T. S. Anirudhan, S. Rijith, A. R. Tharun (2010) “Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368, 13-22.
[3] S. S. Ahluwalia, D. Goyal (2007) “Microbial and plant derived biomass for removal of heavy metals from wastewater”, Bioresource Technology, 98,  2243-2257.
[4] A. Mellah, S. Chegrouche, M. Barkat (2007) “The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations”, Journal of Colloid and Interface Science, 296, 434-441.
[5] S. Loeb,  S. Sourirajan (1962) “Sea  Water Demineralization by Means  of  an Osmotic Mem-brane”, Advances in Chemistry Series, 38, 117.
[6] R. D. Noble, S. A. Stern (1995) Membrane separations technology: principles and applications, Elsevier [2].
[7] Shipra (2009) “Selective Transport of Ag(I) Ion Using Polymer Inclusion Membranes Containing Thiuram Sulphide as a. Carrier”, M.S. Thesis, School of chemistry and biochemistry, Thapar university, Patiala, 1-7.
[8] M.B. Gholivand, S.Khorsandipoor (2000) “Selective and efficient uphill transport of Cu(II) through bulk liquid membrane using N-ethyl-2-aminocyclo-pentene-1-dithiocarboxylie acid as carrier, Journal of Membrane Science, 180,  115-120.
[9] Vladimir Kislik, Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, Elsevier Science, Amsterdam (2010).
[10] G. Muthuraman, T.T. Teng, Cheu Peng Leh, I Norli (2009) “Use of bulk liquid membrane for the removal of chromium(VI) from aqueous acidic solution with tri –n- butyl phosphate as a carrier”, Desalination, 249,  884-890.
[11] K. Mubeena, G. Muthuraman (2015) “Recovery of nickel from aqueous solution using bulk liquid membrane”, International Journal of ChemTech Research, 7(7), 2976-2980.
[12] Narinder Singh, Doo Ok Jang (2009) “Selective and efficient tripodal receptors for competitive solvent extraction and bulk liquid membrane transport of Hg2+”, Journal of Hazardous Materials,168, 727–731.
[13] Mariana Mateescu, Liliana Pacurariu, Gheorghe Nechifor, Irina Fierascu (2013) “Transportof cadmium ions through a bulk liquid membrane with D2EHPA as carrier”, U.P.B. Sci. Bull., Series B, 75(2), 67-74.
[14] Gerardo Leóna, María Amelia Guzmán (2010)  “Facilitated transport of cobalt through bulk liquid membranes containing D2EHPA as carrier. Kinetic study of the influence of some operational variables”, Desalination and Water Treatment, 13,  267–273.
[15] R. Davarkhah, F. Khanramaki, M. Asgari, B. Salimi, P. Ashtari, M. Shamsipur (2013) “Kinetic studies on the extraction of uranium(VI) from phosphoric acid medium by bulk liquid membrane containing di-2-ethylhexyl phosphoric acid”, Journal of Radioanalytical & Nuclear Chemistry, 298(1), 125.
[16] M.R Yaftian, A.A. Zamani, S. Rostamnia (2006) “Thorium (IV) ion-selective transport through a bulk liquid membrane containing 2-thenoyl-trifluoroacetone as extractant-carrier”, Separation and purification Technology, 49, 71-75.
[17] A.K. Dinkar, S.K. Singh, S.C. Tripathi, R. Verma, A.V.R. Reddy (2013) “Carrier Mediated Transport of Thorium from Nitric Acid Medium using 2-Ethyl Hexyl Hydrogen 2-Ethyl Hexyl Phosphonate (PC88A)/N-Dodecane as Carrier”, Separation Science and Technology (Philadelphia) 48, 728-735. 
[18] D. NandaM. S. OakM. Pravin KumarB. MaitiP. K. Dutta (2001) “Fcilitated transport of Th(IV) across bulk liquid membrane by di(2-ethylhexyl)phosphoric acid”, Separation Science and Technology, 36, 2489-2497.
[19] A.K.Dinkar, Suman Kumar Singh, S. C. Tripathi, P. M. Gandhi, R. Verma, A. V. R. Reddy (2013) “Carrier facilitated transport of thorium from HCl medium using Cyanex 923 in n-dodecane containing supported liquid membrane”, Journal of Radioanalytical and Nuclear Chemistry,  298(1), 707–715
[20] V. K. Jain, Shibu G. Pillai, Rujul A. Pandya, Yadvendra K. Agrawal, Pranav S. Shrivastav (2005) “Selective Extraction, Preconcentration and Transport Studies of Thorium(IV) Using Octa-Functionalized Calix[4]resorcinarene-Hydroxamic Acid”, Analytical science, 21, 129-135.
[21] S. H. Yin, S. W. Li, F. Xie, L-B. Chang and J. H. Peng (2015) “Study on the aqueous solution behavior and extraction mechanism of Nd(III) in the presence of the complexing agent lactic acid with di-(2-ethylhexyl) phosphoric acid”, RSC Advances, 5, 64550-64556.
[22] B. Dalai, S.K. Dash, S.K. Singh, N. Swain, B.B. Swain (2012) “Physico-chemical properties of di-(2-ethylhexyl) phosphoric acid with apolar solvents from ultrasonic studies”, Physics and Chemistry of Liquids: An International Journal,50 (2), 242-253.
[23] M. Eskandari Nasab, A. Sam, S.A. Milani (2011) “Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction”, Hydrometallurgy, 106 (3–4), 141–147.
[24] M. Ma­, D. He­, Q. Wang, Q. Xie (2001)  “Kinetics of europium(III) transport through a liquid membrane containing HEH(EHP) in kerosene”, Talanta,  55(6), 1109-1117.
[25] D. He, M. Ma (2000) “Kinetics of Cadmium(II) Transport through a Liquid Membrane Containing Tricapryl Amine in Xylene”, Separation Science and Technology, 35(10), 1573-1585.
[26] D. He, M. Ma, Z. Zhao (2000) “Transport of cadmium ions through a liquid membrane containing amine extractants as carriers”, Journal of Membrane Science, 169(1), 53–59.
[27] W. Zhang, J. Liu, Z. Ren, S. Wang, C. Du, J. Ma (2009) “Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier”, Chemical Engineering Journal, 150(1), 83–89.
[28] A.Yilmaz,A. Kaya, H.­K. AlpoguzM. Ersoz­, M. Yilmaz(2008) “Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxaoctyl-amide derivative”, Separation and Purification Technology, 59 (1), 1–8.
[29] A. Ö. Saf, S. Alpaydin, A. Sirit (2006) “Transport kinetics of chromium(VI) ions through a bulk liquid membrane containing p-tert-butyl calix[4]arene 3-morpholino propyl diamide derivative”, Journal of Membrane Science, 283(1–2), 448–455.
[30] H. Gubbuk, O. Gungor , H. Korkmaz Alpoguz, M. Ersoz, M. Yılmaz (2010) “Kinetic study of mercury (II) transport through a liquid membrane containing calix[4]arene nitrile derivatives as a carrier in chloroform”, Desalination 261, 157–161.
[31] E. L. Zebroski, H.W. Alter, F.K. Heumann (1951) “Thorium Complexes with Chloride, Fluoride, Nitrate, Phosphate and Sulfate”, J. Am. Chem. Soc., 73, 5646-5650.
[32] B. Gupta, P. Malik, A. Deep (2002) “Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite”, J. Radioanal. Nucl. Chem., 252, 451-456.
[33] P. D. Blundy (1958) “The determination of chromium by a solvent-extraction method”, Analyst,  83, 555-558.
[34] P.R. Danesi, R. Chirizia (1980) “The kinetics of metal solvent extraction”, Crit. Rev. Anal. Chem., 10, 1–126. 
[35] Lazarova, L. Boyadzhiev (1993) “Kinetic aspects of copper(II) transport across liquid membrane containing Lix-860 as a carrier”, J Membr Sci, 78,  239-245.
[36] V. G. Maiorov, A. I. Nikolaev, O. P. Adkina, G. B. Mazunina (2006) “Extraction of Thorium with Tributyl Phosphate from Chloride Solutions”, J. Radiochemistry, 48, 517-520.
[37] P. R. Danesi, C. Cianetti (1984) “Multistage separation of metal ions with a series of composite supported liquid membranes”, Journal of Membrane Science, 20(2), 215–226.
[38] T. Sato (1968) “The Extraction of Thorium from Hydrochloric Acid Solutions by Di-(2-Ethylhexyl)-Phosphoric Acid”, Zeitschrift fur anorganische und allgemeine, Chemie., 296-304.