پیلولیچینگ کانسگ کالکسپریتی کم عیار با استفاده از باکتری‌های ترموفیل

مجدی لطفعلیان: محمد رزگی، مهین شفیعی، اسماعیل دره زرشکی
دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان
زهره منافی: سید علی سید باقری
مجتمع مس سرچشمه، شرکت ملی صنایع مس ایران

چکیده
در سالهای اخیر پیلولیچینگ باکتری‌ایی مس از منابع کالکسپریتی به عنوان یک تکنولوژی نوین با پتانسیل خوب برای استحصال مس از خاک‌های کم عیار مورد توجه قرار گرفته است. پارامترهای متفاوتی بر فراورد پیلولیچینگ کانسگ های سولفیدی تأثیر مستقیم یا غیر مستقیم دارد. در این خصوص می‌توان به اهمیت نوع باکتری، محدوده و دما مناسب برای فعالیت بهینه باکتری اشاره نمود. هدف از این تحقیق ارزیابی پیلولیچینگ باکتری‌های ترموفیل برای استحصال مس از کانسگ کم عیار کالکسپریتی می‌باشد. در این راستا با استفاده از دونوع باکتری ترموفیل معادل و ترموفیل مطلق، پیلولیچینگ یک نمونه شاخ کانسگ کم عیار کالکسپریتی شرکت مس ایران به روش ارزیابی و pH تاثیر دما، pH و غلظت یون‌های آلی آهن بر دسترسی استخراج مس بررسی گردید. نتایج این تحقیق نشان می‌دهد که باکتری‌های ترموفیل مطلق در مقایسه با باکتری‌های ترموفیل معادل، از پتانسیل بهتری برای استخراج مس از منابع کالکسپریتی برخوردار می‌باشند. تحت شرایط بهینه دما، pH و نسبت یون فرو به فلایک استخراج مس با استفاده از باکتری‌های ترموفیل مطلق در مقایسه با موارد مشابه با باکتری‌های ترموفیل معادل به میزان 17% افزایش می‌یابد.

حقوق ناشر محفوظ است.
منبع اولیه فلز مس است که تقریباً 70% از خارج شانه شده مس دنبالاً را تشکیل می‌دهد. فلاتسیون و یوپر متالیزی گسترش‌های جایگزین فلز مس را انجام می‌دهد. اکسیدهای اصلی مس را از روی تولید به‌طور متوسط 2-1 درصد است. این روش علاوه بر مصرف زیاد انرژی، آلودگی محیط زیست را نیز به‌دنبال دارد. کاربرد آنها در بازیابی مس بیشتر محسوس می‌شود.[8] برخی اکسیدهای اصلی، ماهیچ سطح انسداد سیلولزیک مس از کارایی بالاتری بخورداری می‌نمایند. مسئله این که در این حالت بازیابی می‌تواند به‌لمد. انتخل مس از کالکورپریت به عنوان منبع اصلی مس سیلولزیک طی یک واکنش کروماتیشیمی می‌باشد. اکسیدهای اصلی مس را از کالکورپریت تولید کرده در نمای درست به‌کار برده‌ای. اکسیدهای اصلی مس را از کالکورپریت بخورداری می‌نمایند. این واکنش به‌کار برده‌ای در واکنش مه‌سازی می‌باشد و با کاربرد کالکورپریت در واکنش‌های بیشتری از کالکورپریت است. واکنش‌های بیشتری از کالکورپریت و محلول لچینگ مجاور می‌باشد. به‌همین حساب اکسیدهای کالکورپریت را می‌توان به‌کته‌ها ۴ و ۵ نوشت. داد:

\[
CuFeS_2 + \frac{3}{2} Fe_3(OH)_2 \rightarrow CuFeS_2 + \frac{3}{2} FeSO_4 + \frac{3}{2} S
\]

(۱)

\[
CuFeS_2 + \frac{3}{2} Fe_3(OH)_2 + \frac{3}{2} H_2O \rightarrow CuFeS_2 + \frac{3}{2} FeSO_4 + \frac{3}{2} H_2SO_4
\]

(۲)

در این فرآیند واکنش واکنش‌ها غالب است که به پتاسیل اکسیدان کالکورپریت محدود حسی است. سرعت‌های بالای انحلال در پتاسیل‌ها ۶۹ کم در محصول \(\frac{45.65}{0.5} \) به‌دست می‌آید. متابولیسم این واکنش داده شده است که به‌منظور بی‌کسی این واکنش، به‌کته‌ها اکسیدهای شیمیایی و مس اکسیدهای سیلولزیک و محلول لچینگ مجاور می‌باشد. به‌همین حساب اکسیدهای کالکورپریت را می‌توان به‌کته‌ها ۴ و ۵ نوشت. داد:

\[
2Fe^{3+} + 0.5O_2 + 2H^+ \rightarrow 2Fe^{2+} + H_2O
\]

(۳)

\[
2Fe^{3+} + MS \rightarrow 2Fe^{2+} + M^{2+} + S
\]

(۴)

علاوه بر اکسیدهای فلز مس، گوگرد، تولید شده از اکسیدهای شیمیایی و واکنش‌ها نیز توسط باکتری‌ها اکسید شده و تولید اسید می‌کند. واکنش ۳۵ نوشت. داد:

\[
S^0 + 1.5O_2 + H_2O \rightarrow H_2SO_4
\]

(۵)

پتاسیل‌ها به‌منظور تولید واکنش‌های اکسیدهای شیمیایی و اکسیدهای سیلولزیک و محلول لچینگ مجاور می‌باشد. متابولیسم این واکنش داده شده است که به‌منظور بی‌کسی این واکنش، به‌کته‌ها اکسیدهای شیمیایی و مس اکسیدهای سیلولزیک و محلول لچینگ مجاور می‌باشد. به‌همین حساب اکسیدهای کالکورپریت را می‌توان به‌کته‌ها ۴ و ۵ نوشت. داد:

\[
CuFeS_2 + 4H^+ \rightarrow Fe^{3+} + Cu^{2+} + 2H_2S
\]

(۶)
پارامترهای ستون در لیچینگ کالکروپیتیک که می‌توان
شرایط کلی آن را در محیط بیست و هفتم فراهم نمود،
عبارتند از:[2]
- توجه به عدم دارایی از تولید دیواره در بخش
قابل پزشکی نهضت، مخصوصاً اکسپرسنیت،
- اصلاح سرعت کالکروپیتیک در دماهای بالاتر و
پتانژیل‌های اگزوسی-کاوش با پایین.
با این پایین است، لیچینگ کالکروپیتیک باعث شده
که بی‌پروازی کالکروپیتیک که می‌تواند در میانه
فاز سیستمی اولیه مس و در میانه وزن طولانی
تاباشد. حوزه شرکت فاز سیستمی برای سطح
بروزان، شرایط فراگیری مختلف با سرعت رشد
بهینه در هیچ چند شب، است. [12] این اساس می‌توان
از پیشتری‌های مزینی برای تولید گرم‌های اولیه و
پایداری گرم‌های ترموفیلی برای نگه داشتن چماق در سطح مورد
نظر استفاده نمود.[12]
در مطالعه جامعی که توسط نژادی و همکاران صورت
گرفت، آزمایش وضعیت نتایج تحقیقات لیچینگ باکتریایی
سیستمی اولیه مس سال 1387 و پتانژیل کاربرد
بیولوژیکی در صنایع مس ایران مورد بررسی قرار
گرفت.[15] در این تحقیق آزمایش‌های با کالکروپیتیک
پرویش از 16 نمونه با غلظت مس بین 0.16، و
7.2% انجام شدند. این نمونه‌ها از منابع مختلف، کارخانه‌ها
پردازش شده و بالگیره‌های مختلف عضو کارکرد شرکت های خصوصی
پرویش شرکت ملی مس ایران تهیه شدند. نتایج این
ارتباطی نشان می‌دهد که تولید اکسپرسنیت نهضت
می‌تواند با داشتن هر 48 حلقه یا از
با استفاده از باکتری‌های مزینی، ترموفیلی معدن و
-term مطلق در دمای عملياتی بین 70 تا 72 درجه
سانتی‌گراد وجود دارد.[15]

3Fe^{3+} + 2SO_4^{2-} + 6H_2O + M^+ \rightarrow \frac{MFe_3(SO_4)_2(OH)_6 + 6H^+}{M = K^+, Na^+, NH_4^+} \tag{17}

3

رسوب سولفات آن فیروزه‌ی در اصلی
انحلال کامل کالکروپیتیک در میانه بیولوژیکی است.
با توجه به شرایط ویژه بیولوژیکی کالکروپیتیک و
از راهکننده مقتضی شرایط الکتروشیمیایی اکثر تحقیقات
لیچینگ و بیولوژیکی بر روی کاسپین‌های کالکروپیتیک در
راکتورهای قابل کشت انگیمی شده است. برخی

دماهای پایین به شدت تحت تأثیر ORP فرآیند رد و
سرعت انحلال در پتانژیل های پایین بیشتر از مقایسه
بالای آن است. بعلاوه در مقایسه با پتانژیل اکسپرسنیت
کالکروپیت لیچینگ کالکروپیتیک منتقل و اکسپرسنیت پیبید
و اکسپرسنیت. است. غیر از این که حساسیت
محصولات اکسپرسنیت به حساسیت سولفات آلی آلوده
می‌باشد. این تکنیک‌ها به جهت در حین مراحل لیچینگ و
بیولوژیکی بر روی سطح کالکروپیت تشکیل می‌شوند با
استفاده از تنکیش‌های متقابل مورد بررسی قرار
گرفته‌اند، حضور ترکیب آلی در تولید کالکروپیت تغییر
در سه‌بعدی سولفاتی شناسایی شده است که
عبارتند از سولفاتی (کالکروپیت و اکسپرسنیت نامیده) گویک
ضروره سولفات فرآیند مشهور به
جاروستی و فاز دی سولفایدی.[10]
براساس ترکیب‌های باورگر، مکانیزمش برای
اکسپرسنیت کالکروپیتیک توسط بون فریک ارائه شده
است. شروع این مکانیزم‌های سولفات در سولفاتی
است که به سرعت بر روی سطح تازه کالکروپیت تشکیل
می‌شود. در اکسپرسنیت فاز سولفاتی نشان می‌دهد که
پایانی برای تشکیل جاروستی است.[3] از آنجا که
میکروگانیزم‌ها آن فرآیند فیروزه‌ی به صورت
جاروستی تحت شرایط از ارژنی شده است.[2]
آزمایش‌های اولیه با استفاده از ارنژ مایع 500 میلی لیتر آبی گرم که هر ارنژ حاوی 180 میلی لیتر مهیج کشت 20980 میلی لیتر تلخ‌زی دو بکتریای (10٪ حجمی) و 27 غرم خاک کم عیار بود که pH بالا با استفاده از اسید سولفوریک روی مدار مورد نظر تنظیم شد. ارزیابی داخل اکتیپاتور شیکار دار که با سرعت 210 (rpm) ثابت در صدها میکروترم قرار داده شده در آب رای ایجاد غلظت آهن مورد نظر نیز از سولفات آهن دو دی آه سه ظرفیتی استفاده شد.

به منظور بررسی روند پیشرفت فرآیند بیولیچینگ، ویژنسل آکسیسی - کاهش پالا این آزمایشگیری می‌گردد. pH پالا با واسطه کردن اسید سولفوریک رقیق و چربان آب تبخیر شده توسط آب مایع صورت می‌گیرد.

#- ارائه تابع و تحلیل بافت‌ها
آزمایش‌های ظروف لرزان بر اساس طرح کامل فاکتوریال انجام شدند. در این آزمایش‌ها نتایج چهار پارامتر مورد نظر در دو سطح مورد بررسی قرار گرفت. با توجه به هدف تحقیق، چهار پارامتر مستقل دما، pH غلظت آهن فرآهن غلظت آهن فرآهن غلظت آهن فرآهن فرآهن فرآهن و فرآهن فرآهن فرآهن استراتح مس انتخاب شده. سطوح در مقدار گرفته برای چهار پارامتر مورد بررسی در جدول 1(2) ارائه شده است.

<table>
<thead>
<tr>
<th>Component</th>
<th>Content (wt %)</th>
<th>Mineral</th>
<th>Content (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.34</td>
<td>CuFeS₂</td>
<td>0.78</td>
</tr>
<tr>
<td>Fe</td>
<td>1.82</td>
<td>FeS₂</td>
<td>2.75</td>
</tr>
<tr>
<td>S</td>
<td>0.79</td>
<td>ZnS</td>
<td>0.02</td>
</tr>
<tr>
<td>SiO₂</td>
<td>67.53</td>
<td>Fe₃O₄</td>
<td>0.27</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#- مواد و مراحل تحقیق
در این تحقیق از دو گونه باکتری ترموفیلیان طبقه و ترموفیلیان مورد استفاده شد. باکتریای ترموفیلیان طبقه از گونه‌ای باکتریای بی‌دسته‌بری و در دمای 10 grad سانتریگا در حضور گوگرد عصاره (ب/د) کمیتی داده شد. باکتریای ترموفیلیان مورد استفاده از گونه‌ای بی‌دسته‌بری نا مهندس مس سرچشمه جداسازی شده و در دمای 50 grad سانتریگا و حضور گوگرد عصاره (ب/د) و سولفات آهن نورتیزتی کشیده شد. میکروفیت کشت مورد استفاده، pH آن با کمک اسید سولفوریک 9 دمای که pH آن با کمک اسید سولفوریک روی 18 تنظیم گردید. نمک‌های مورد استفاده در همه بی‌روما به سلولز کردن، تنظیم آنها در جدول 1(2) نمایش داده شده است. در این تحقیق از یک نمک مناسب کم عیار کالکوپیپریت مورد استفاده شد که شامل مناسب مناسب کم عیار کالکوپیپریتی منطقه می‌باشد. نتایج آنالیز میزان‌بندی و شیمیایی نموده در جدول 1(2) آورده شده است.

جدول 1(2): ترکیب پایه میکروفیت کشت باکتریایی

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NH₄)₂SO₄</td>
<td>3.000</td>
</tr>
<tr>
<td>MgSO₄ 7H₂O</td>
<td>0.500</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>0.630</td>
</tr>
<tr>
<td>KCl</td>
<td>0.100</td>
</tr>
<tr>
<td>Ca(NO₃)₂·H₂O</td>
<td>0.014</td>
</tr>
</tbody>
</table>

جدول 2(3): پارامترهای مورد بررسی در آزمایش‌های
شکل (1) تغییرات غلظت مس در پخش کننده بیولوژیک با استفاده از باکتری‌های ترموموفیل مطلق و ترموموفیل معطل را نشان می‌دهد. در مجموع تفاوت قبل و بعد غلظت مس در محلول حاصل از فراخوان بیولوژیک با استفاده از باکتری‌های ترموموفیل مطلق نسبت به مورد مسابقه با باکتری‌های ترموموفیل معطل مشاهده نمی‌شود. نشان دهنده کاهش بافر در باکتری‌های مطلق می‌باشد. بررسی دیقت تر نتایج نشان می‌دهد که در مراحل ابتلا به رشته‌ها در زمان‌های گذشته از حدود ۶ روز غلظت مس در محلول حاصل از بیولوژیک توسط باکتری‌های ترموموفیل معطل بیش از مقدار مربوط به بیولوژیک با باکتری‌های ترموموفیل مطلق می‌باشد. بنابراین این نتایج جایگزین سایر آزمایش‌ها می‌باشد. پاسخ‌های کلی، برای توجه به پاسخ‌های دیگر خاص، در زمان‌های محدود‌تر کاهش‌گیری در محلول و ربط با خط به‌روز و نشان دهنده تحسین احتمال تغییرات زمانی بیولوژیک درون‌شهری با باکتری‌های ترموموفیل معطل داشته باشند.

شکل (2) تغییرات پتاسیل اکسایش-کاهش در حین فراخوان بیولوژیک با استفاده از باکتری‌های ترموموفیل مطلق و ترموموفیل معطل در پخش کننده بیولوژیک در حیاتی به‌صورت مبتنی بر نشان می‌دهد که تغییرات در باکتری‌های ترموموفیل مطلق در حیات‌بیولوژیک اکسایش-کاهش کاهش در دمای اتمسفری نشان می‌دهد که این‌ها باعث سلول‌های در محدوده امواج می‌شوند. برای نمونه می‌توان به این نتایج جایگزین سایر آزمایش‌ها می‌باشد. پاسخ‌های کلی، برای توجه به پاسخ‌های دیگر خاص، در زمان‌های محدود‌تر کاهش‌گیری در محلول و ربط با خط به‌روز و نشان دهنده تحسین احتمال تغییرات زمانی بیولوژیک درون‌شهری با باکتری‌های ترموموفیل معطل داشته باشند.

نتایج حاصل از آنالیز واریانس طرح‌های فاکتوریال و تابیت پارامترهای در حیاتی گرفته شده و همچنین تاثیر مقیاس آنها بر روی انحلال مس در جدول (۳) اورده شده است. با در نظر گرفتن آنها مقایسه F سطح معنی‌داری بین نیترات پارامترهای کاهش و مقایسه بین بر اساس روش F به عنوان دهه عرضه نیترات پارامترهای کاهش و غلظت ماده pH همیشه مشابه می‌باشد نیترات رابطه همیشه معنی‌داری نیترات پارامترهای سیاه معنی‌دار نیترات رابطه همیشه معنی‌داری N

جدول (۳): تأثیر حاصل از آنالیز واریانس طرح فاکتوریال

<table>
<thead>
<tr>
<th>Factors</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Temperature</td>
<td>50</td>
</tr>
<tr>
<td>B: pH of leaching solution</td>
<td>1.6</td>
</tr>
<tr>
<td>C: Ferric ion concentration</td>
<td>0</td>
</tr>
<tr>
<td>D: Ferrous ion concentration</td>
<td>0</td>
</tr>
</tbody>
</table>

تأثیر پارامترهای و تاثیر مقیاس آنها بر روی میزان انحلال مس را منجر به استفاده از میزانهای ۱ مشخص نمود. ضریب منفی pH نشان می‌دهد که استفاده از مقایسه پایینتر تأثیر بیشتری بر روی انحلال مس دارد، علاوه بر این ضریب منفی دمای غلظت آن فاکتور‌های مهم بهبود بازیابی مس در اثر افزایش، مقایسه این پارامترهای می‌باشد. همان‌طور که از میزانهای ۱ مشخص است این بر روی انحلال مس pH بیشترین تاثیر را بر روی بازیابی مس دارد.
تولید اسید توسط فراآیندهای باکتریایی و همچنین کاهش واکنش‌های مصرف کندنه اسید مرتب می‌باشد.

نمودار ۱: مقایسه تغییرات ذرات Ca در فراآیند بیولیپهینگ

نمودار ۲: مقایسه تغییرات ذرات K اکسایش-کاهش فراآیند بیولیپهینگ

تغییرات در مراحل مختلف زمینه فراآیند هنگام استفاده از باکتری‌های ترموفیلی مطلق و باکتری‌های ترموفیل معمول در شکل (۱) مقایسه شده است. این نتایج حاکی از افزایش نسبی pH در مراحل ابتدا، فراآیند و فاز سازنده باکتری‌ها می‌باشد. با پیشرفت فراآیند pH سیستم تا حدودی یک واحدهای کاهش می‌یابد که با افزایش
بر فرآیند انتقال مس از کانسنت کالکپریت می‌باشد. اضافه کردن پونه‌های آهن فرآ در محلول پیچیک باعث افزایش بازیابی مس شده به طوری که کاهش می‌شود. درصد افزایش مشخص از حدود 82 درصد به بیش از 98 درصد افزایش می‌باید. پونه‌های آهن در درجه‌بندی این بارای سطح‌های باکتری‌ایفا می‌کنند، علاوه بر آن حضور پونه‌های آهن در پتانسیل محلول پیچیک تاثیر کاهش است. بطوری که باعث افزایش استحکام مس از کالکپریت می‌گردد. تشکیل حاصل و استحکام سیالی مانند کالکپریت به عنوان یک عامل تأثیر گانزد نظر قرار گیرد.

[차트 2] تاثیر حضور آهن فرآ بر بازیابی مس

همه پاکتری‌هایی که در فرآیند پیچیک آبی 230 درجه سانتی‌گراد به محدوده pH اسیدی (3-3.5) فعالیت دارند. به دو دیلی بود که آهن فرآ در فرآیند پیچیک نقش مهمی می‌ریزند. می‌کنند: تاثیر رستاخیز از اسید و افزایش pH محدوده‌ای از pH حاصل از تاثیر بر روی میزان انتقال مس از کانسنت کالکپریتی که در شکل (5) نشان داده شده است حاکی از آن است که با کاهش pH میزان بازیابی به طور متوسط ۷۷٪ افزایش یافته و از حدود ۶۲ درصد به بیش از ۸۱ درصد رسید.

[차트 3] تاثیر pH بر بازیابی مس در عملیات پیچیک

[차트 4] نشان دهنده تأثیر حضور آهن فرآ بر بازیابی مس
در تحقیق تحت شرایط بیهنه عملیاتی می‌توان به بازیابی حدود 85 درصد دست یافت.

تفکر و تحقیق

این تحقیق با هم‌افکتی سرمایه‌ها و مشارکت‌های مختلف تحقیق و توسعه مجموعه سرمایه‌های انجام شده است. نویسنده‌گان مقاله‌ای از مهندس‌م종‌محم در تحقیق کارآمد باکتری‌های ترکیب‌های مطیع و گونه‌های بسیاری‌تر از ترکیب‌های مختلف و یک تحقیق‌اتی هیدرولیک و کارشناهان مطرح این مجموعه از بیهنه‌هایی تحقیق شده‌اند.

مراجع

[9] G.J. Olson, J.A. Brierley, C.L. Brierley, "Bioleaching review part B: Progress in bioleaching:

شکل (7): تأثیر حضور بیونهای فریک بر بازیابی مس

نیزه گیری

استحصال اقتصادی مس از منابع کم عیار کالکوپرپریتی می‌تواند شرکت ملی مس ایران را در بازیابی منانسم در رقابت های جهانی قرار دهد. در این تحقیق کارآمد باکتری‌های ترکیب‌های ترکیب مطلی و گونه‌های بسیاری‌تر از ترکیب‌های کارآمد و منابع مس سرمایه‌ای جدیدی که خلاصه مس‌سرمایه‌ای جدیدی شده، صورت می‌پذیرد. این دست یافته باعث شد که از آزمایش‌های پیوسته بیونهای فریک کارآمد شود که عیار کالکوپرپریتی به عنوان نمونه اولین منابع کم عیار شرکت ملی مس ایران نشان می‌دهد که بهره‌مندی پایدار یک پازارهای عملیاتی می‌تواند به تحلیل قابل قبولی دست یابد. در این راستا، نسبت شیمی ایفای بی‌چتره که به ویژه که با کنترل pH در محدوده بی‌چتره میزان بازیابی مس تا حدود 17/افرازیت نشان می‌دهد. با تنظیم نسبت شیمیایی بی‌چتره به فریک و در صورت نیاز اضافه شدن نمودنی آهن فریک به محلول لیمویی ترکیب میزان لیمویی مس از منابع کم عیار کالکوپرپریتی را تا حدود 10 درصد افزایش داد. بدین

64
Bioleaching of low-grade chalcopyritic ore using thermophile bacteria

M. Lotfalian, M. Ranjbar, M. Schaffie, E. Darezereshki
Shahid Bahonar University of Kerman
S. A. Seyedbagheri, Z. Manafi
National Iranian Copper Company

Article history:
Received 1 September 2008
Received in revised from 18 October 2008
Accepted 4 December 2008

Keywords:
Bioleaching
thermophile bacteria
low-grade copper ore
chalcopyrite

A B S T R A C T

In recent years, bacterial leaching of copper from low grade chalcopyritic ores has been adverted very much. Different parameters such as the type of microorganisms, pH, temperature have a direct or indirect influence on the bioleaching efficiency of sulfide minerals. Therefore, the main objective of this study was to quantify the potential of thermophile microorganisms for copper recovery from low-grade chalcopyritic ores. Using a representative chalcopyritic low grade copper ore from National Iranian Copper Company with a total copper grade of about 0.344% (CuFeS₂= 0.78%), and two different thermophile bacteria, several bioleaching tests were conducted. The final results of lab tests show the potential of extremely thermophiles for bioleaching of copper from this type of low grade ores is higher than moderate thermophiles. At optimum temperature, pH and Fe²⁺/Fe³⁺ ratio, the average copper recovery from low grade ore with extremely thermophiles is up to 17% higher than that with moderate thermophiles.

All rights reserved.